These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25895730)

  • 1. A new methodology to determine the isoeluotropic conditions on ultra-performance flash purification stationary phases from analytical reversed liquid chromatography stationary phase.
    Héron S; Charbonneau D; Albisson P; Estievenart G; Groni S; Tchapla A
    J Chromatogr A; 2015 Jun; 1397():59-72. PubMed ID: 25895730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase.
    Nogueira R; Lämmerhofer M; Lindner W
    J Chromatogr A; 2005 Sep; 1089(1-2):158-69. PubMed ID: 16130784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography.
    Aral H; Çelik KS; Altındağ R; Aral T
    Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages of core-shell particle columns in Sequential Injection Chromatography for determination of phenolic acids.
    Chocholouš P; Vacková J; Srámková I; Satínský D; Solich P
    Talanta; 2013 Jan; 103():221-7. PubMed ID: 23200381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System maps for retention of small neutral compounds on a biphenylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography.
    Atapattu SN; Poole CF; Praseuth MB
    J Chromatogr A; 2016 Dec; 1478():68-74. PubMed ID: 27916389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing online multicolumn two-dimensional liquid chromatography screening for facile selection of stationary and mobile phase conditions in both dimensions.
    Wang H; Lhotka HR; Bennett R; Potapenko M; Pickens CJ; Mann BF; Haidar Ahmad IA; Regalado EL
    J Chromatogr A; 2020 Jul; 1622():460895. PubMed ID: 32408991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of core-shell and totally porous ultra high performance liquid chromatographic stationary phases based on their selectivity towards alfuzosin compounds.
    Szulfer J; Plenis A; Bączek T
    J Chromatogr A; 2014 Jun; 1346():69-77. PubMed ID: 24795236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography.
    Žuvela P; Skoczylas M; Jay Liu J; Ba Czek T; Kaliszan R; Wong MW; Buszewski B; Héberger K
    Chem Rev; 2019 Mar; 119(6):3674-3729. PubMed ID: 30604951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry.
    Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R
    J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry.
    Capriotti AL; Cavaliere C; La Barbera G; Montone CM; Piovesana S; Zenezini Chiozzi R; Laganà A
    Talanta; 2018 Mar; 179():792-802. PubMed ID: 29310309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions.
    Samuelsson J; Eiriksson FF; Åsberg D; Thorsteinsdóttir M; Fornstedt T
    J Chromatogr A; 2019 Aug; 1598():92-100. PubMed ID: 30961963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of flavonoids on different phenyl-bonded stationary phases-the influence of polar groups in stationary phase structure.
    Janas P; Bocian S; Jandera P; Kowalkowski T; Buszewski B
    J Chromatogr A; 2016 Jan; 1429():198-206. PubMed ID: 26709027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation and comparison of the kinetic performance of ultra-high performance liquid chromatography and high-performance liquid chromatography columns in hydrophilic interaction and reversed-phase liquid chromatography conditions.
    Song H; Adams E; Desmet G; Cabooter D
    J Chromatogr A; 2014 Nov; 1369():83-91. PubMed ID: 25441074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Destructive stationary phase gradients for reversed-phase/hydrophilic interaction liquid chromatography.
    Cain CN; Forzano AV; Rutan SC; Collinson MM
    J Chromatogr A; 2018 Oct; 1570():82-90. PubMed ID: 30104058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation.
    Liang C; Qiao JQ; Lian HZ
    J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of substrates and closely related glucuronide metabolites using various chromatographic modes.
    Romand S; Rudaz S; Guillarme D
    J Chromatogr A; 2016 Feb; 1435():54-65. PubMed ID: 26818236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of kafirins on surface porous reversed-phase high-performance liquid chromatography columns.
    Bean SR; Ioerger BP; Blackwell DL
    J Agric Food Chem; 2011 Jan; 59(1):85-91. PubMed ID: 21141963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.