These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25895966)

  • 101. The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD).
    Scott NE; Giogha C; Pollock GL; Kennedy CL; Webb AI; Williamson NA; Pearson JS; Hartland EL
    J Biol Chem; 2017 Oct; 292(42):17337-17350. PubMed ID: 28860194
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Polarizing the T helper 17 response in Citrobacter rodentium infection via expression of resistin-like molecule α.
    Chen G; Chan AJ; Chung JI; Jang JC; Osborne LC; Nair MG
    Gut Microbes; 2014; 5(3):363-8. PubMed ID: 24831469
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Hypervirulent-host-associated Citrobacter rodentium cells have poor acid tolerance.
    Smith A; Bhagwat AA
    Curr Microbiol; 2013 May; 66(5):522-6. PubMed ID: 23328901
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium.
    Cheng C; Wakefield MJ; Yang J; Tauschek M; Robins-Browne RM
    PLoS One; 2012; 7(11):e50682. PubMed ID: 23226353
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.
    Solaymani-Mohammadi S; Lakhdari O; Minev I; Shenouda S; Frey BF; Billeskov R; Singer SM; Berzofsky JA; Eckmann L; Kagnoff MF
    J Leukoc Biol; 2016 Mar; 99(3):475-82. PubMed ID: 26467188
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Sensory Nociceptive Neurons Contribute to Host Protection During Enteric Infection With Citrobacter rodentium.
    Ramirez VT; Sladek J; Godinez DR; Rude KM; Chicco P; Murray K; Brust-Mascher I; Gareau MG; Reardon C
    J Infect Dis; 2020 Jun; 221(12):1978-1988. PubMed ID: 31960920
    [TBL] [Abstract][Full Text] [Related]  

  • 107. An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis.
    Lu Q; Yao Q; Xu Y; Li L; Li S; Liu Y; Gao W; Niu M; Sharon M; Ben-Nissan G; Zamyatina A; Liu X; Chen S; Shao F
    Cell Host Microbe; 2014 Sep; 16(3):351-63. PubMed ID: 25211077
    [TBL] [Abstract][Full Text] [Related]  

  • 108. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation.
    Gao X; Wang X; Pham TH; Feuerbacher LA; Lubos ML; Huang M; Olsen R; Mushegian A; Slawson C; Hardwidge PR
    Cell Host Microbe; 2013 Jan; 13(1):87-99. PubMed ID: 23332158
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Type III secretion system effectors form robust and flexible intracellular virulence networks.
    Ruano-Gallego D; Sanchez-Garrido J; Kozik Z; Núñez-Berrueco E; Cepeda-Molero M; Mullineaux-Sanders C; Naemi Baghshomali Y; Slater SL; Wagner N; Glegola-Madejska I; Roumeliotis TI; Pupko T; Fernández LÁ; Rodríguez-Patón A; Choudhary JS; Frankel G
    Science; 2021 Mar; 371(6534):. PubMed ID: 33707240
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.
    Petty NK; Feltwell T; Pickard D; Clare S; Toribio AL; Fookes M; Roberts K; Monson R; Nair S; Kingsley RA; Bulgin R; Wiles S; Goulding D; Keane T; Corton C; Lennard N; Harris D; Willey D; Rance R; Yu L; Choudhary JS; Churcher C; Quail MA; Parkhill J; Frankel G; Dougan G; Salmond GP; Thomson NR
    PLoS Pathog; 2011 Apr; 7(4):e1002018. PubMed ID: 21490962
    [TBL] [Abstract][Full Text] [Related]  

  • 111. An outer membrane protease of the omptin family prevents activation of the Citrobacter rodentium PhoPQ two-component system by antimicrobial peptides.
    Le Sage V; Zhu L; Lepage C; Portt A; Viau C; Daigle F; Gruenheid S; Le Moual H
    Mol Microbiol; 2009 Oct; 74(1):98-111. PubMed ID: 19708916
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium.
    Wei OL; Hilliard A; Kalman D; Sherman M
    Infect Immun; 2005 Apr; 73(4):1978-85. PubMed ID: 15784538
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Identification and characterization of Cri1, a locus controlling mortality during Citrobacter rodentium infection in mice.
    Diez E; Zhu L; Teatero SA; Paquet M; Roy MF; Loredo-Osti JC; Malo D; Gruenheid S
    Genes Immun; 2011 Jun; 12(4):280-90. PubMed ID: 21326319
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Overview of the Effect of Citrobacter rodentium Infection on Host Metabolism and the Microbiota.
    Hopkins EGD; Frankel G
    Methods Mol Biol; 2021; 2291():399-418. PubMed ID: 33704766
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium.
    Taylor GA; Huang HI; Fee BE; Youssef N; Jewell ML; Cantillana V; Schoenborn AA; Rogala AR; Buckley AF; Feng CG; Vallance BA; Gulati AS; Hammer GE
    PLoS Pathog; 2020 May; 16(5):e1008553. PubMed ID: 32453761
    [TBL] [Abstract][Full Text] [Related]  

  • 116. PmrC (EptA) and CptA Negatively Affect Outer Membrane Vesicle Production in Citrobacter rodentium.
    Sinha A; Nyongesa S; Viau C; Gruenheid S; Veyrier FJ; Le Moual H
    J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30670547
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Citrobacter rodentium Infection Induces Persistent Molecular Changes and Interferon Gamma-Dependent Major Histocompatibility Complex Class II Expression in the Colonic Epithelium.
    Mullineaux-Sanders C; Kozik Z; Sanchez-Garrido J; Hopkins EGD; Choudhary JS; Frankel G
    mBio; 2021 Feb; 13(1):e0323321. PubMed ID: 35100877
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Characterization of the Citrobacter rodentium Cpx regulon and its role in host infection.
    Vogt SL; Scholz R; Peng Y; Guest RL; Scott NE; Woodward SE; Foster LJ; Raivio TL; Finlay BB
    Mol Microbiol; 2019 Mar; 111(3):700-716. PubMed ID: 30536519
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Hepatic and renal cytochrome p450 gene regulation during citrobacter rodentium infection in wild-type and toll-like receptor 4 mutant mice.
    Richardson TA; Sherman M; Antonovic L; Kardar SS; Strobel HW; Kalman D; Morgan ET
    Drug Metab Dispos; 2006 Mar; 34(3):354-60. PubMed ID: 16339354
    [TBL] [Abstract][Full Text] [Related]  

  • 120. CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium.
    Manta C; Heupel E; Radulovic K; Rossini V; Garbi N; Riedel CU; Niess JH
    Mucosal Immunol; 2013 Jan; 6(1):177-88. PubMed ID: 22854708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.