BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25896011)

  • 1. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid.
    Ke F; Wang L; Zhu J
    Nanoscale; 2015 May; 7(18):8321-5. PubMed ID: 25896011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.
    Ke F; Wang L; Zhu J
    Nanoscale; 2015 Jan; 7(3):1201-8. PubMed ID: 25486865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AgPd Nanoparticles Deposited on WO
    Yu C; Guo X; Xi Z; Muzzio M; Yin Z; Shen B; Li J; Seto CT; Sun S
    J Am Chem Soc; 2017 Apr; 139(16):5712-5715. PubMed ID: 28402632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance.
    Ke F; Zhu J; Qiu LG; Jiang X
    Chem Commun (Camb); 2013 Feb; 49(13):1267-9. PubMed ID: 23135003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile in situ self-assembly strategy for large-scale fabrication of CHS@MOF yolk/shell structure and its catalytic application in a flow system.
    Gao H; Luan Y; Chaikittikul K; Dong W; Li J; Zhang X; Jia D; Yang M; Wang G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4667-74. PubMed ID: 25676010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance.
    Kang SW; Lee YW; Park Y; Choi BS; Hong JW; Park KH; Han SW
    ACS Nano; 2013 Sep; 7(9):7945-55. PubMed ID: 23915173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis.
    Chen YZ; Xu Q; Yu SH; Jiang HL
    Small; 2015 Jan; 11(1):71-6. PubMed ID: 25201445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of open-mouthed, yolk-shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis.
    Shi Q; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chem Sci; 2015 Jul; 6(7):4350-4357. PubMed ID: 29218206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green dual-template synthesis of AgPd core-shell nanoparticles with enhanced electrocatalytic activity.
    Liu H; Li L; Luo L; He Y; Cong C; He Y; Hao Z; Gao D
    Nanotechnology; 2020 Jan; 31(3):035603. PubMed ID: 31557747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes.
    Cao N; Su J; Hong X; Luo W; Cheng G
    Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane.
    Yang L; Luo W; Cheng G
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe₃O₄@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction.
    Ke F; Qiu LG; Zhu J
    Nanoscale; 2014; 6(3):1596-601. PubMed ID: 24336813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu₂O core-shell heteronanowires.
    Xiong J; Li Z; Chen J; Zhang S; Wang L; Dou S
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15716-25. PubMed ID: 25148582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst.
    Nikseresht A; Daniyali A; Ali-Mohammadi M; Afzalinia A; Mirzaie A
    Ultrason Sonochem; 2017 Jul; 37():203-207. PubMed ID: 28427624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. B-doped Pd catalyst: boosting room-temperature hydrogen production from formic acid-formate solutions.
    Jiang K; Xu K; Zou S; Cai WB
    J Am Chem Soc; 2014 Apr; 136(13):4861-4. PubMed ID: 24635163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.