BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25896094)

  • 1. Intrathecal application of the antimicrobial peptide CRAMP reduced mortality and neuroinflammation in an experimental model of pneumococcal meningitis.
    Dörr A; Kress E; Podschun R; Pufe T; Tauber SC; Brandenburg LO
    J Infect; 2015 Aug; 71(2):188-99. PubMed ID: 25896094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis.
    Merres J; Höss J; Albrecht LJ; Kress E; Soehnlein O; Jansen S; Pufe T; Tauber SC; Brandenburg LO
    J Innate Immun; 2014; 6(2):205-18. PubMed ID: 23969854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRAMP deficiency leads to a pro-inflammatory phenotype and impaired phagocytosis after exposure to bacterial meningitis pathogens.
    Kress E; Merres J; Albrecht LJ; Hammerschmidt S; Pufe T; Tauber SC; Brandenburg LO
    Cell Commun Signal; 2017 Sep; 15(1):32. PubMed ID: 28915816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance.
    Böhland M; Kress E; Stope MB; Pufe T; Tauber SC; Brandenburg LO
    J Neuroimmunol; 2016 Oct; 299():90-97. PubMed ID: 27725130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells.
    Brandenburg LO; Jansen S; Albrecht LJ; Merres J; Gerber J; Pufe T; Tauber SC
    J Neuroimmunol; 2013 Feb; 255(1-2):18-31. PubMed ID: 23141747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formyl peptide receptor agonist Ac2-26 alleviates neuroinflammation in a mouse model of pneumococcal meningitis.
    Rüger M; Kipp E; Schubert N; Schröder N; Pufe T; Stope MB; Kipp M; Blume C; Tauber SC; Brandenburg LO
    J Neuroinflammation; 2020 Oct; 17(1):325. PubMed ID: 33121515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of formyl peptide receptor 1 and 2 leads to more severe inflammation and higher mortality in mice with of pneumococcal meningitis.
    Oldekamp S; Pscheidl S; Kress E; Soehnlein O; Jansen S; Pufe T; Wang JM; Tauber SC; Brandenburg LO
    Immunology; 2014 Nov; 143(3):447-61. PubMed ID: 24863484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis.
    Brandenburg LO; Varoga D; Nicolaeva N; Leib SL; Wilms H; Podschun R; Wruck CJ; Schröder JM; Pufe T; Lucius R
    J Neuropathol Exp Neurol; 2008 Nov; 67(11):1041-54. PubMed ID: 18957897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of chemokine (C-C motif) ligand 3 leads to decreased survival and reduced immune response after bacterial meningitis.
    Aust V; Kress E; Abraham S; Schröder N; Kipp M; Stope MB; Pufe T; Tauber SC; Brandenburg LO
    Cytokine; 2018 Nov; 111():246-254. PubMed ID: 30199766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathelicidin-Related Antimicrobial Peptide Negatively Regulates Bacterial Endotoxin-Induced Glial Activation.
    Bhusal A; Nam Y; Seo D; Lee WH; Suk K
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pro-inflammatory cytokine interferon-gamma is an important driver of neuropathology and behavioural sequelae in experimental pneumococcal meningitis.
    Too LK; Ball HJ; McGregor IS; Hunt NH
    Brain Behav Immun; 2014 Aug; 40():252-68. PubMed ID: 24607660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in Gram-negative bacterial pneumonia.
    Kovach MA; Ballinger MN; Newstead MW; Zeng X; Bhan U; Yu FS; Moore BB; Gallo RL; Standiford TJ
    J Immunol; 2012 Jul; 189(1):304-11. PubMed ID: 22634613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C1 inhibitor treatment improves host defense in pneumococcal meningitis in rats and mice.
    Zwijnenburg PJ; van der Poll T; Florquin S; Polfliet MM; van den Berg TK; Dijkstra CD; Roord JJ; Hack CE; van Furth AM
    J Infect Dis; 2007 Jul; 196(1):115-23. PubMed ID: 17538891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjuvant granulocyte colony-stimulating factor therapy results in improved spatial learning and stimulates hippocampal neurogenesis in a mouse model of pneumococcal meningitis.
    Schmidt AK; Reich A; Falkenburger B; Schulz JB; Brandenburg LO; Ribes S; Tauber SC
    J Neuropathol Exp Neurol; 2015 Jan; 74(1):85-94. PubMed ID: 25470346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-18 deficiency and its long-term behavioural and cognitive impacts in a murine model of pneumococcal meningitis.
    Too LK; Mitchell AJ; Yau B; Ball HJ; McGregor IS; Hunt NH
    Behav Brain Res; 2014 Apr; 263():176-89. PubMed ID: 24503119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain parenchymal TNF-α and IL-1β induction in experimental pneumococcal meningitis.
    Izadpanah K; Freyer D; Weber JR; Braun JS
    J Neuroimmunol; 2014 Nov; 276(1-2):104-11. PubMed ID: 25218213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental studies of pneumococcal meningitis.
    Brandt CT
    Dan Med Bull; 2010 Jan; 57(1):B4119. PubMed ID: 20175949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An infant mouse model of brain damage in pneumococcal meningitis.
    Grandgirard D; Steiner O; Täuber MG; Leib SL
    Acta Neuropathol; 2007 Dec; 114(6):609-17. PubMed ID: 17938941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis.
    Masouris I; Klein M; Dyckhoff S; Angele B; Pfister HW; Koedel U
    J Neuroinflammation; 2017 Nov; 14(1):214. PubMed ID: 29096648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dexamethasone regulation of matrix metalloproteinase expression in experimental pneumococcal meningitis.
    Liu X; Han Q; Sun R; Li Z
    Brain Res; 2008 May; 1207():237-43. PubMed ID: 18374903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.