BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25896256)

  • 1. Ketamine-Induced Modulation of the Thalamo-Cortical Network in Healthy Volunteers As a Model for Schizophrenia.
    Höflich A; Hahn A; Küblböck M; Kranz GS; Vanicek T; Windischberger C; Saria A; Kasper S; Winkler D; Lanzenberger R
    Int J Neuropsychopharmacol; 2015 Apr; 18(9):. PubMed ID: 25896256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.
    Rivolta D; Heidegger T; Scheller B; Sauer A; Schaum M; Birkner K; Singer W; Wibral M; Uhlhaas PJ
    Schizophr Bull; 2015 Sep; 41(5):1105-14. PubMed ID: 25987642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia.
    Grent-'t-Jong T; Rivolta D; Gross J; Gajwani R; Lawrie SM; Schwannauer M; Heidegger T; Wibral M; Singer W; Sauer A; Scheller B; Uhlhaas PJ
    Brain; 2018 Aug; 141(8):2511-2526. PubMed ID: 30020423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia.
    Anticevic A; Corlett PR; Cole MW; Savic A; Gancsos M; Tang Y; Repovs G; Murray JD; Driesen NR; Morgan PT; Xu K; Wang F; Krystal JH
    Biol Psychiatry; 2015 Mar; 77(6):569-80. PubMed ID: 25281999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI.
    Northoff G; Richter A; Bermpohl F; Grimm S; Martin E; Marcar VL; Wahl C; Hell D; Boeker H
    Schizophr Res; 2005 Jan; 72(2-3):235-48. PubMed ID: 15560968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ketamine on brain function during response inhibition.
    Steffens M; Neumann C; Kasparbauer AM; Becker B; Weber B; Mehta MA; Hurlemann R; Ettinger U
    Psychopharmacology (Berl); 2018 Dec; 235(12):3559-3571. PubMed ID: 30357437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers.
    Malhotra AK; Pinals DA; Weingartner H; Sirocco K; Missar CD; Pickar D; Breier A
    Neuropsychopharmacology; 1996 May; 14(5):301-7. PubMed ID: 8703299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: implications for psychosis.
    Dandash O; Harrison BJ; Adapa R; Gaillard R; Giorlando F; Wood SJ; Fletcher PC; Fornito A
    Neuropsychopharmacology; 2015 Feb; 40(3):622-31. PubMed ID: 25141922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists.
    Anand A; Charney DS; Oren DA; Berman RM; Hu XS; Cappiello A; Krystal JH
    Arch Gen Psychiatry; 2000 Mar; 57(3):270-6. PubMed ID: 10711913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia.
    Holcomb HH; Lahti AC; Medoff DR; Cullen T; Tamminga CA
    Neuropsychopharmacology; 2005 Dec; 30(12):2275-82. PubMed ID: 16034443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers.
    Gouzoulis-Mayfrank E; Heekeren K; Neukirch A; Stoll M; Stock C; Obradovic M; Kovar KA
    Pharmacopsychiatry; 2005 Nov; 38(6):301-11. PubMed ID: 16342002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic deficit and schizophrenia-like negative symptoms: new evidence from ketamine-induced mismatch negativity alterations in healthy male humans.
    Thiebes S; Leicht G; Curic S; Steinmann S; Polomac N; Andreou C; Eichler I; Eichler L; Zöllner C; Gallinat J; Hanganu-Opatz I; Mulert C
    J Psychiatry Neurosci; 2017 Jun; 42(4):273-283. PubMed ID: 28556775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms.
    Fleming LM; Javitt DC; Carter CS; Kantrowitz JT; Girgis RR; Kegeles LS; Ragland JD; Maddock RJ; Lesh TA; Tanase C; Robinson J; Potter WZ; Carlson M; Wall MM; Choo TH; Grinband J; Lieberman J; Krystal JH; Corlett PR
    Neuroimage Clin; 2019; 22():101739. PubMed ID: 30852397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans.
    Driesen NR; McCarthy G; Bhagwagar Z; Bloch M; Calhoun V; D'Souza DC; Gueorguieva R; He G; Ramachandran R; Suckow RF; Anticevic A; Morgan PT; Krystal JH
    Mol Psychiatry; 2013 Nov; 18(11):1199-204. PubMed ID: 23337947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of esketamine in the treatment of negative symptoms in schizophrenia - A case series.
    Nunes MV; Adelino MPM; Ajub E; Quarantini LC; Lacerda ALT
    Schizophr Res; 2018 Dec; 202():394-396. PubMed ID: 29935883
    [No Abstract]   [Full Text] [Related]  

  • 16. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat.
    Amat-Foraster M; Celada P; Richter U; Jensen AA; Plath N; Artigas F; Herrik KF
    Neuropharmacology; 2019 Nov; 158():107745. PubMed ID: 31445017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Default mode network connectivity change corresponds to ketamine's delayed glutamatergic effects.
    Li M; Woelfer M; Colic L; Safron A; Chang C; Heinze HJ; Speck O; Mayberg HS; Biswal BB; Salvadore G; Fejtova A; Walter M
    Eur Arch Psychiatry Clin Neurosci; 2020 Mar; 270(2):207-216. PubMed ID: 30353262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].
    Mechri A; Saoud M; Khiari G; d'Amato T; Dalery J; Gaha L
    Encephale; 2001; 27(1):53-9. PubMed ID: 11294039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-Ketamine-Induced NMDA Receptor Blockade during Natural Speech Production and Its Implications for Formal Thought Disorder in Schizophrenia: A Pharmaco-fMRI Study.
    Nagels A; Cabanis M; Oppel A; Kirner-Veselinovic A; Schales C; Kircher T
    Neuropsychopharmacology; 2018 May; 43(6):1324-1333. PubMed ID: 29105665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting-state functional EEG connectivity in salience and default mode networks and their relationship to dissociative symptoms during NMDA receptor antagonism.
    de la Salle S; Choueiry J; Shah D; Bowers H; McIntosh J; Ilivitsky V; Carroll B; Knott V
    Pharmacol Biochem Behav; 2021 Feb; 201():173092. PubMed ID: 33385439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.