BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25896256)

  • 21. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.
    Joules R; Doyle OM; Schwarz AJ; O'Daly OG; Brammer M; Williams SC; Mehta MA
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4205-18. PubMed ID: 25980482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of ketamine as a pharmacological model of thalamic dysconnectivity across the illness course of schizophrenia.
    Abram SV; Roach BJ; Fryer SL; Calhoun VD; Preda A; van Erp TGM; Bustillo JR; Lim KO; Loewy RL; Stuart BK; Krystal JH; Ford JM; Mathalon DH
    Mol Psychiatry; 2022 May; 27(5):2448-2456. PubMed ID: 35422467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia.
    Holcomb HH; Lahti AC; Medoff DR; Cullen T; Tamminga CA
    Neuropsychopharmacology; 2005 Dec; 30(12):2275-82. PubMed ID: 16034443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study.
    Deakin JF; Lees J; McKie S; Hallak JE; Williams SR; Dursun SM
    Arch Gen Psychiatry; 2008 Feb; 65(2):154-64. PubMed ID: 18250253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
    Krystal JH; Karper LP; Seibyl JP; Freeman GK; Delaney R; Bremner JD; Heninger GR; Bowers MB; Charney DS
    Arch Gen Psychiatry; 1994 Mar; 51(3):199-214. PubMed ID: 8122957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers.
    Gouzoulis-Mayfrank E; Heekeren K; Neukirch A; Stoll M; Stock C; Obradovic M; Kovar KA
    Pharmacopsychiatry; 2005 Nov; 38(6):301-11. PubMed ID: 16342002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of ketamine and risperidone on eye movement control in healthy volunteers.
    Schmechtig A; Lees J; Perkins A; Altavilla A; Craig KJ; Dawson GR; William Deakin JF; Dourish CT; Evans LH; Koychev I; Weaver K; Smallman R; Walters J; Wilkinson LS; Morris R; Williams SC; Ettinger U
    Transl Psychiatry; 2013 Dec; 3(12):e334. PubMed ID: 24326395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia.
    Kegeles LS; Abi-Dargham A; Zea-Ponce Y; Rodenhiser-Hill J; Mann JJ; Van Heertum RL; Cooper TB; Carlsson A; Laruelle M
    Biol Psychiatry; 2000 Oct; 48(7):627-40. PubMed ID: 11032974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of ketamine and midazolam on resting state connectivity and comparison with ENIGMA connectivity deficit patterns in schizophrenia.
    Adhikari BM; Dukart J; Hipp JF; Forsyth A; McMillan R; Muthukumaraswamy SD; Ryan MC; Hong LE; Eickhoff SB; Jahandshad N; Thompson PM; Rowland LM; Kochunov P
    Hum Brain Mapp; 2020 Feb; 41(3):767-778. PubMed ID: 31633254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia.
    Anticevic A; Gancsos M; Murray JD; Repovs G; Driesen NR; Ennis DJ; Niciu MJ; Morgan PT; Surti TS; Bloch MH; Ramani R; Smith MA; Wang XJ; Krystal JH; Corlett PR
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16720-5. PubMed ID: 23012427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.
    Shcherbinin S; Doyle O; Zelaya FO; de Simoni S; Mehta MA; Schwarz AJ
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4191-204. PubMed ID: 26223493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis.
    Newcomer JW; Farber NB; Jevtovic-Todorovic V; Selke G; Melson AK; Hershey T; Craft S; Olney JW
    Neuropsychopharmacology; 1999 Feb; 20(2):106-18. PubMed ID: 9885791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].
    Mechri A; Saoud M; Khiari G; d'Amato T; Dalery J; Gaha L
    Encephale; 2001; 27(1):53-9. PubMed ID: 11294039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamatergic Signaling Drives Ketamine-Mediated Response in Depression: Evidence from Dynamic Causal Modeling.
    Gilbert JR; Yarrington JS; Wills KE; Nugent AC; Zarate CA
    Int J Neuropsychopharmacol; 2018 Aug; 21(8):740-747. PubMed ID: 29668918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance on a probabilistic inference task in healthy subjects receiving ketamine compared with patients with schizophrenia.
    Evans S; Almahdi B; Sultan P; Sohanpal I; Brandner B; Collier T; Shergill SS; Cregg R; Averbeck BB
    J Psychopharmacol; 2012 Sep; 26(9):1211-7. PubMed ID: 22389244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems.
    Dawson N; Morris BJ; Pratt JA
    Schizophr Bull; 2013 Mar; 39(2):366-77. PubMed ID: 22114100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic connections between thalamic sub-regions and the lateral prefrontal cortex are differentially impacted by acute methylphenidate.
    Gorka AX; Lago TR; Balderston N; Torrisi S; Fuchs B; Grillon C; Ernst M
    Psychopharmacology (Berl); 2020 Jun; 237(6):1873-1883. PubMed ID: 32307560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects.
    Krystal JH; Abi-Saab W; Perry E; D'Souza DC; Liu N; Gueorguieva R; McDougall L; Hunsberger T; Belger A; Levine L; Breier A
    Psychopharmacology (Berl); 2005 Apr; 179(1):303-9. PubMed ID: 15309376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping Thalamocortical Functional Connectivity in Chronic and Early Stages of Psychotic Disorders.
    Woodward ND; Heckers S
    Biol Psychiatry; 2016 Jun; 79(12):1016-25. PubMed ID: 26248537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alterations in interhemispheric gamma-band connectivity are related to the emergence of auditory verbal hallucinations in healthy subjects during NMDA-receptor blockade.
    Thiebes S; Steinmann S; Curic S; Polomac N; Andreou C; Eichler IC; Eichler L; Zöllner C; Gallinat J; Leicht G; Mulert C
    Neuropsychopharmacology; 2018 Jun; 43(7):1608-1615. PubMed ID: 29453445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.