BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25896738)

  • 1. Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
    Wendler S; Otto A; Ortseifen V; Bonn F; Neshat A; Schneiker-Bekel S; Walter F; Wolf T; Zemke T; Wehmeier UF; Hecker M; Kalinowski J; Becher D; Pühler A
    J Proteomics; 2015 Jul; 125():1-16. PubMed ID: 25896738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters.
    Wendler S; Otto A; Ortseifen V; Bonn F; Neshat A; Schneiker-Bekel S; Wolf T; Zemke T; Wehmeier UF; Hecker M; Kalinowski J; Becher D; Pühler A
    J Proteomics; 2016 Jan; 131():140-148. PubMed ID: 26597626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
    Wendler S; Hürtgen D; Kalinowski J; Klein A; Niehaus K; Schulte F; Schwientek P; Wehlmann H; Wehmeier UF; Pühler A
    J Biotechnol; 2013 Aug; 167(2):178-89. PubMed ID: 22944206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
    Wolf T; Droste J; Gren T; Ortseifen V; Schneiker-Bekel S; Zemke T; Pühler A; Kalinowski J
    BMC Genomics; 2017 Jul; 18(1):562. PubMed ID: 28743243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of the acarbose biosynthesis gene cluster in Actinoplanes sp. SE50/110 is dependent on the growth phase.
    Droste J; Ortseifen V; Schaffert L; Persicke M; Schneiker-Bekel S; Pühler A; Kalinowski J
    BMC Genomics; 2020 Nov; 21(1):818. PubMed ID: 33225887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110.
    Schaffert L; März C; Burkhardt L; Droste J; Brandt D; Busche T; Rosen W; Schneiker-Bekel S; Persicke M; Pühler A; Kalinowski J
    Microb Cell Fact; 2019 Jun; 18(1):114. PubMed ID: 31253141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
    Schwientek P; Szczepanowski R; Rückert C; Kalinowski J; Klein A; Selber K; Wehmeier UF; Stoye J; Pühler A
    BMC Genomics; 2012 Mar; 13():112. PubMed ID: 22443545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of the highly expressed small carbohydrate-binding protein Cgt improves the acarbose formation in Actinoplanes sp. SE50/110.
    Schaffert L; Schneiker-Bekel S; Gierhake J; Droste J; Persicke M; Rosen W; Pühler A; Kalinowski J
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5395-5408. PubMed ID: 32346757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
    Schwientek P; Wendler S; Neshat A; Eirich C; Rückert C; Klein A; Wehmeier UF; Kalinowski J; Stoye J; Pühler A
    J Biotechnol; 2013 Aug; 167(2):166-77. PubMed ID: 23142701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
    Wolf T; Schneiker-Bekel S; Neshat A; Ortseifen V; Wibberg D; Zemke T; Pühler A; Kalinowski J
    J Biotechnol; 2017 Jun; 251():112-123. PubMed ID: 28427920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
    Schwientek P; Neshat A; Kalinowski J; Klein A; Rückert C; Schneiker-Bekel S; Wendler S; Stoye J; Pühler A
    J Biotechnol; 2014 Nov; 190():85-95. PubMed ID: 24642337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete genome sequence of the actinobacterium Streptomyces glaucescens GLA.O (DSM 40922) carrying gene clusters for the biosynthesis of tetracenomycin C, 5`-hydroxy streptomycin, and acarbose.
    Ortseifen V; Kalinowski J; Pühler A; Rückert C
    J Biotechnol; 2017 Nov; 262():84-88. PubMed ID: 28917933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering in Actinoplanes sp. SE50/110 - development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors.
    Gren T; Ortseifen V; Wibberg D; Schneiker-Bekel S; Bednarz H; Niehaus K; Zemke T; Persicke M; Pühler A; Kalinowski J
    J Biotechnol; 2016 Aug; 232():79-88. PubMed ID: 27181842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
    Wendler S; Ortseifen V; Persicke M; Klein A; Neshat A; Niehaus K; Schneiker-Bekel S; Walter F; Wehmeier UF; Kalinowski J; Pühler A
    J Biotechnol; 2014 Dec; 191():113-20. PubMed ID: 25169663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a 1-epi-valienol 7-kinase activity in the producer of acarbose, Actinoplanes sp. SE50/110.
    Zhang CS; Podeschwa M; Block O; Altenbach HJ; Piepersberg W; Wehmeier UF
    FEBS Lett; 2003 Apr; 540(1-3):53-7. PubMed ID: 12681482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production.
    Wang Y; Xu N; Ye C; Liu L; Shi Z; Wu J
    Front Microbiol; 2015; 6():632. PubMed ID: 26161077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50.
    Hemker M; Stratmann A; Goeke K; Schröder W; Lenz J; Piepersberg W; Pape H
    J Bacteriol; 2001 Aug; 183(15):4484-92. PubMed ID: 11443082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway.
    Zhang CS; Stratmann A; Block O; Brückner R; Podeschwa M; Altenbach HJ; Wehmeier UF; Piepersberg W
    J Biol Chem; 2002 Jun; 277(25):22853-62. PubMed ID: 11937512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essentiality of the Maltase AmlE in Maltose Utilization and Its Transcriptional Regulation by the Repressor AmlR in the Acarbose-Producing Bacterium
    Schaffert L; Schneiker-Bekel S; Dymek S; Droste J; Persicke M; Busche T; Brandt D; Pühler A; Kalinowski J
    Front Microbiol; 2019; 10():2448. PubMed ID: 31736895
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative functional genomics of the acarbose producers reveals potential targets for metabolic engineering.
    Xie H; Zhao Q; Zhang X; Kang Q; Bai L
    Synth Syst Biotechnol; 2019 Mar; 4(1):49-56. PubMed ID: 30723817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.