BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25897079)

  • 1. The Association of the Xeroderma Pigmentosum Group D DNA Helicase (XPD) with Transcription Factor IIH Is Regulated by the Cytosolic Iron-Sulfur Cluster Assembly Pathway.
    Vashisht AA; Yu CC; Sharma T; Ro K; Wohlschlegel JA
    J Biol Chem; 2015 May; 290(22):14218-25. PubMed ID: 25897079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of XPD in cellular functions: To TFIIH and beyond.
    Houten BV; Kuper J; Kisker C
    DNA Repair (Amst); 2016 Aug; 44():136-142. PubMed ID: 27262611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CIA Targeting Complex Is Highly Regulated and Provides Two Distinct Binding Sites for Client Iron-Sulfur Proteins.
    Odermatt DC; Gari K
    Cell Rep; 2017 Feb; 18(6):1434-1443. PubMed ID: 28178521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair.
    Park YJ; Kim SH; Kim TS; Lee SM; Cho BS; Seo CI; Kim HD; Kim J
    Cell Mol Life Sci; 2021 Apr; 78(7):3591-3606. PubMed ID: 33464383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation.
    Ito S; Tan LJ; Andoh D; Narita T; Seki M; Hirano Y; Narita K; Kuraoka I; Hiraoka Y; Tanaka K
    Mol Cell; 2010 Aug; 39(4):632-40. PubMed ID: 20797633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.
    Zhu Q; Wani G; Sharma N; Wani A
    DNA Repair (Amst); 2012 Dec; 11(12):942-50. PubMed ID: 23083890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities.
    Abdulrahman W; Iltis I; Radu L; Braun C; Maglott-Roth A; Giraudon C; Egly JM; Poterszman A
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E633-42. PubMed ID: 23382212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-regulated assembly of the cytosolic iron-sulfur cluster biogenesis machinery.
    Fan X; Barshop WD; Vashisht AA; Pandey V; Leal S; Rayatpisheh S; Jami-Alahmadi Y; Sha J; Wohlschlegel JA
    J Biol Chem; 2022 Jul; 298(7):102094. PubMed ID: 35654137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, function and evolution of the XPD family of iron-sulfur-containing 5'-->3' DNA helicases.
    White MF
    Biochem Soc Trans; 2009 Jun; 37(Pt 3):547-51. PubMed ID: 19442249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism.
    Gari K; León Ortiz AM; Borel V; Flynn H; Skehel JM; Boulton SJ
    Science; 2012 Jul; 337(6091):243-5. PubMed ID: 22678361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular requirements for iron-sulfur cluster insertion into the antiviral radical SAM protein viperin.
    Upadhyay AS; Stehling O; Panayiotou C; Rösser R; Lill R; Överby AK
    J Biol Chem; 2017 Aug; 292(33):13879-13889. PubMed ID: 28615450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase.
    Fuss JO; Tainer JA
    DNA Repair (Amst); 2011 Jul; 10(7):697-713. PubMed ID: 21571596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients.
    Kim KS; Maio N; Singh A; Rouault TA
    Hum Mol Genet; 2018 Mar; 27(5):837-852. PubMed ID: 29309586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ciao1 interacts with Crumbs and Xpd to regulate organ growth in Drosophila.
    Jung J; Yeom E; Choi KW
    Cell Death Dis; 2020 May; 11(5):365. PubMed ID: 32404863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of TFIIH activation for nucleotide excision repair.
    Kokic G; Chernev A; Tegunov D; Dienemann C; Urlaub H; Cramer P
    Nat Commun; 2019 Jun; 10(1):2885. PubMed ID: 31253769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
    Nishiwaki T; Kobayashi N; Iwamoto T; Yamamoto A; Sugiura S; Liu YC; Sarasin A; Okahashi Y; Hirano M; Ueno S; Mori T
    DNA Repair (Amst); 2008 Dec; 7(12):1990-8. PubMed ID: 18817897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair.
    Coin F; Oksenych V; Egly JM
    Mol Cell; 2007 Apr; 26(2):245-56. PubMed ID: 17466626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair.
    Winkler GS; Araújo SJ; Fiedler U; Vermeulen W; Coin F; Egly JM; Hoeijmakers JH; Wood RD; Timmers HT; Weeda G
    J Biol Chem; 2000 Feb; 275(6):4258-66. PubMed ID: 10660593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair.
    Wolski SC; Kuper J; Kisker C
    Biol Chem; 2010 Jul; 391(7):761-5. PubMed ID: 20482310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In TFIIH, XPD helicase is exclusively devoted to DNA repair.
    Kuper J; Braun C; Elias A; Michels G; Sauer F; Schmitt DR; Poterszman A; Egly JM; Kisker C
    PLoS Biol; 2014 Sep; 12(9):e1001954. PubMed ID: 25268380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.