These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 25897126)

  • 1. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis.
    Seruggia D; Fernández A; Cantero M; Pelczar P; Montoliu L
    Nucleic Acids Res; 2015 May; 43(10):4855-67. PubMed ID: 25897126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes.
    Nakagawa Y; Sakuma T; Sakamoto T; Ohmuraya M; Nakagata N; Yamamoto T
    BMC Biotechnol; 2015 May; 15():33. PubMed ID: 25997509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes.
    Yen ST; Zhang M; Deng JM; Usman SJ; Smith CN; Parker-Thornburg J; Swinton PG; Martin JF; Behringer RR
    Dev Biol; 2014 Sep; 393(1):3-9. PubMed ID: 24984260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system.
    Mizuno S; Dinh TT; Kato K; Mizuno-Iijima S; Tanimoto Y; Daitoku Y; Hoshino Y; Ikawa M; Takahashi S; Sugiyama F; Yagami K
    Mamm Genome; 2014 Aug; 25(7-8):327-34. PubMed ID: 24879364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.
    Challa AK; Boitet ER; Turner AN; Johnson LW; Kennedy D; Downs ER; Hymel KM; Gross AK; Kesterson RA
    PLoS One; 2016; 11(5):e0155812. PubMed ID: 27224051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9.
    Honda A; Hirose M; Sankai T; Yasmin L; Yuzawa K; Honsho K; Izu H; Iguchi A; Ikawa M; Ogura A
    Exp Anim; 2015; 64(1):31-7. PubMed ID: 25195632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system.
    Hara S; Kato T; Goto Y; Kubota S; Tamano M; Terao M; Takada S
    J Reprod Dev; 2016 Oct; 62(5):531-536. PubMed ID: 27396308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system.
    Zhang Z; Aslam AF; Liu X; Li M; Huang Y; Tan A
    J Insect Physiol; 2015 Aug; 79():73-9. PubMed ID: 26070541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Insulator Scanning of CpG Islands to Identify Regulatory Regions of Promoters Using CRISPR.
    Grob A; Marbiah M; Isalan M
    Methods Mol Biol; 2018; 1766():285-301. PubMed ID: 29605859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of genome editing in studying hearing loss.
    Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X
    Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication.
    Dong C; Qu L; Wang H; Wei L; Dong Y; Xiong S
    Antiviral Res; 2015 Jun; 118():110-7. PubMed ID: 25843425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas).
    Maki JA; Cavallin JE; Lott KG; Saari TW; Ankley GT; Villeneuve DL
    Aquat Toxicol; 2020 May; 222():105464. PubMed ID: 32160575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome modification by CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    FEBS J; 2014 Dec; 281(23):5186-93. PubMed ID: 25315507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System.
    Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F
    J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary sequences flanking the mouse tyrosinase locus ensure faithful pattern of gene expression.
    Seruggia D; Fernández A; Cantero M; Fernández-Miñán A; Gomez-Skarmeta JL; Pelczar P; Montoliu L
    Sci Rep; 2020 Sep; 10(1):15494. PubMed ID: 32968154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.