These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25897143)

  • 1. Evaluation of exposure in mammography: limitations of average glandular dose and proposal of a new quantity.
    Geeraert N; Klausz R; Muller S; Bloch I; Bosmans H
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):342-5. PubMed ID: 25897143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INDIVIDUALISED CALCULATION OF TISSUE IMPARTED ENERGY IN BREAST TOMOSYNTHESIS.
    Geeraert N; Klausz R; Muller S; Bloch I; Bosmans H
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):267-73. PubMed ID: 27127209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DOSE DISTRIBUTION IN A BREAST UNDERGOING MAMMOGRAPHY BASED ON A 3D DETAILED BREAST MODEL FOR CHINESE WOMEN.
    Wang W; Qiu R; Ren L; Feng Z; Wu Z; Li C; Niu Y; Li J
    Radiat Prot Dosimetry; 2018 Oct; 181(3):221-228. PubMed ID: 29438509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating energy deposition in glandular tissues for mammography using multiscale Monte Carlo simulations.
    Oliver PAK; Thomson RM
    Med Phys; 2019 Mar; 46(3):1426-1436. PubMed ID: 30657190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of the glandular radiation dose in digital tomosynthesis of the breast.
    Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi C; Karellas A
    Med Phys; 2007 Jan; 34(1):221-32. PubMed ID: 17278508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered.
    Hernandez AM; Seibert JA; Boone JM
    Med Phys; 2015 Nov; 42(11):6337-48. PubMed ID: 26520725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast dosimetry using high-resolution voxel phantoms.
    Dance DR; Hunt RA; Bakic PR; Maidment AD; Sandborg M; Ullman G; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):359-63. PubMed ID: 15933137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of average glandular dose and an investigation of influencing factors.
    Nigapruke K; Puwanich P; Phaisangittisakul N; Youngdee W
    J Radiat Res; 2010; 51(4):441-8. PubMed ID: 20523013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformance of mean glandular dose from phantom and patient data in mammography.
    Kelaranta A; Toroi P; Timonen M; Komssi S; Kortesniemi M
    Radiat Prot Dosimetry; 2015 Apr; 164(3):342-53. PubMed ID: 25114321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normalized glandular dose (DgN) coefficients from experimental mammographic x-ray spectra.
    Santos JC; Tomal A; de Barros N; Costa PR
    Phys Med Biol; 2019 May; 64(10):105010. PubMed ID: 30959490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-energy contrast-enhanced digital mammography: patient radiation dose estimation using a Monte Carlo code.
    Yakoumakis E; Tzamicha E; Dimitriadis A; Georgiou E; Tsapaki V; Chalazonitis A
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):369-72. PubMed ID: 25836682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose to population as a metric in the design of optimised exposure control in digital mammography.
    Klausz R; Shramchenko N
    Radiat Prot Dosimetry; 2005; 114(1-3):369-74. PubMed ID: 15933139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation for correlation analysis of average glandular dose by breast thickness and glandular ratio in breast tissue.
    Kim ST; Cho JK
    Technol Health Care; 2014; 22(3):345-50. PubMed ID: 24704647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Average glandular dose conversion coefficients for segmented breast voxel models.
    Zankl M; Fill U; Hoeschen C; Panzer W; Regulla D
    Radiat Prot Dosimetry; 2005; 114(1-3):410-4. PubMed ID: 15933148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser.
    Sato H; Ando M; Shimao D
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):231-3. PubMed ID: 21515613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating mean glandular dose using proprietary mammography phantoms.
    Hartley LD; Cobb BJ; Hutchinson DE
    Appl Radiat Isot; 1999 Jan; 50(1):205-13. PubMed ID: 10028638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale Monte Carlo simulations for dosimetry in x-ray breast imaging: Part II - Microscopic scales.
    Massera RT; Tomal A; Thomson RM
    Med Phys; 2024 Feb; 51(2):1117-1126. PubMed ID: 38146824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging.
    Thacker SC; Glick SJ
    Phys Med Biol; 2004 Dec; 49(24):5433-44. PubMed ID: 15724534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Dose Homogeneity in Cone-Beam Breast Computed Tomography.
    Mettivier G; Costa M; Lanconelli N; Ianiro A; Pugliese M; Quarto M; Russo P
    Radiat Prot Dosimetry; 2017 Aug; 175(4):473-481. PubMed ID: 28074018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.