BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25897316)

  • 1. Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod.
    Oellermann M; Lieb B; Pörtner HO; Semmens JM; Mark FC
    Front Zool; 2015; 12():6. PubMed ID: 25897316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy balance and cold adaptation in the octopus Pareledone charcoti.
    Daly HI; Peck LS
    J Exp Mar Biol Ecol; 2000 Mar; 245(2):197-214. PubMed ID: 10699210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.
    Oellermann M; Strugnell JM; Lieb B; Mark FC
    BMC Evol Biol; 2015 Jul; 15():133. PubMed ID: 26142723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod.
    Zielinski S; Sartoris FJ; Pörtner HO
    Biol Bull; 2001 Feb; 200(1):67-76. PubMed ID: 11249213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life histories of Antarctic incirrate octopods (Cephalopoda: Octopoda).
    Schwarz R; Hoving HJ; Noever C; Piatkowski U
    PLoS One; 2019; 14(7):e0219694. PubMed ID: 31295339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trophic ecology drives trace element concentrations in the Antarctic octopod community.
    Lischka A; Bustamante P; Braid H; Piatkowski U; Lacoue-Labarthe T
    Sci Total Environ; 2021 May; 768():144373. PubMed ID: 33454479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.
    Giomi F; Pörtner HO
    Front Physiol; 2013; 4():110. PubMed ID: 23720633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A panel of microsatellite loci from two species of octopus, Pareledone turqueti (Joubin, 1905) and Pareledone charcoti (Joubin, 1905).
    Strugnell JM; Allcock AL; Watts PC
    Mol Ecol Resour; 2009 Jul; 9(4):1239-42. PubMed ID: 21564889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.
    Strobel A; Graeve M; Poertner HO; Mark FC
    PLoS One; 2013; 8(7):e68865. PubMed ID: 23874794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view.
    Pörtner HO; Peck L; Somero G
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2233-58. PubMed ID: 17553776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closely related octopus species show different spatial genetic structures in response to the Antarctic seascape.
    Strugnell JM; Allcock AL; Watts PC
    Ecol Evol; 2017 Oct; 7(19):8087-8099. PubMed ID: 29043058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti.
    Ahn DH; Shin SC; Kim BM; Kang S; Kim JH; Ahn I; Park J; Park H
    Gigascience; 2017 Aug; 6(8):1-6. PubMed ID: 28873966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context.
    Matias RS; Gregory S; Ceia FR; Baeta A; Seco J; Rocha MS; Fernandes EM; Reis RL; Silva TH; Pereira E; Piatkowski U; Ramos JA; Xavier JC
    Mar Environ Res; 2019 Sep; 150():104757. PubMed ID: 31306868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological adaptation of an Antarctic Na+/K+-ATPase to the cold.
    Galarza-Muñoz G; Soto-Morales SI; Holmgren M; Rosenthal JJ
    J Exp Biol; 2011 Jul; 214(Pt 13):2164-74. PubMed ID: 21653810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for oxygen delivery and extracellular magnesium in limiting cold tolerance of the sub-antarctic stone crab Paralomis granulosa?
    Wittmann AC; Pörtner HO; Sartoris FJ
    Physiol Biochem Zool; 2012; 85(3):285-98. PubMed ID: 22494984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2.
    Strobel A; Bennecke S; Leo E; Mintenbeck K; Pörtner HO; Mark FC
    Front Zool; 2012 Oct; 9(1):28. PubMed ID: 23075125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.