BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25897696)

  • 1. Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction.
    Li SW; Li J; Li HB; Naidu R; Ma LQ
    J Hazard Mater; 2015 Sep; 295():145-52. PubMed ID: 25897696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions.
    Li J; Li K; Cave M; Li HB; Ma LQ
    J Hazard Mater; 2015 Sep; 295():55-62. PubMed ID: 25911623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils.
    Li SW; Chang M; Huang X; Li H; Li HB; Ma LQ
    Chemosphere; 2022 Feb; 288(Pt 3):132655. PubMed ID: 34710465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of in vitro assay pH and extractant composition on As bioaccessibility in contaminated soils.
    Smith E; Scheckel K; Miller BW; Weber J; Juhasz AL
    Sci Total Environ; 2014 Mar; 473-474():171-7. PubMed ID: 24369295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development.
    Li J; Li K; Cui XY; Basta NT; Li LP; Li HB; Ma LQ
    Sci Total Environ; 2015 Nov; 532():812-20. PubMed ID: 26116410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays.
    Li HB; Li J; Zhu YG; Juhasz AL; Ma LQ
    Sci Total Environ; 2015 Nov; 532():803-11. PubMed ID: 26136157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils.
    Juhasz AL; Weber J; Smith E; Naidu R; Rees M; Rofe A; Kuchel T; Sansom L
    Environ Sci Technol; 2009 Dec; 43(24):9487-94. PubMed ID: 20000545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways.
    Islam MR; Sanderson P; Naidu R; Payne TE; Johansen MP; Bari ASMF; Rahman MM
    J Hazard Mater; 2022 Jan; 421():126757. PubMed ID: 34352522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods.
    Zhou F; Li Y; Ma Y; Peng Q; Cui Z; Liu Y; Wang M; Zhai H; Zhang N; Liang D
    Sci Total Environ; 2021 Mar; 762():143119. PubMed ID: 33158520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccessible and non-bioaccessible fractions of soil arsenic.
    Whitacre SD; Basta NT; Dayton EA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E; Naidu R; Weber J; Juhasz AL
    Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment.
    Fazle Bari ASM; Lamb D; Choppala G; Seshadri B; Islam MR; Sanderson P; Rahman MM
    Ecotoxicol Environ Saf; 2021 Oct; 223():112611. PubMed ID: 34385057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of aging on bioaccessibility of arsenic and lead in soils.
    Liang S; Guan DX; Li J; Zhou CY; Luo J; Ma LQ
    Chemosphere; 2016 May; 151():94-100. PubMed ID: 26930247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the stabilization effect of ferrous sulfate for arsenic-contaminated soils based on chemical extraction methods and in vitro methods: Methodological differences and linkages.
    Geng Z; Wang P; Yin N; Cai X; Fu Y; Fan C; Chang X; Li Y; Ma J; Cui Y; Holm PE
    Sci Total Environ; 2024 May; 925():171729. PubMed ID: 38492589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can arsenic bioavailability be predicted in soils using in vitro gastro-intestinal simulation?
    Sun Y; Jones K; Sun Z; Shen J; Bu F; Ma F; Gu Q
    Ecotoxicol Environ Saf; 2024 Apr; 275():116235. PubMed ID: 38520809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of arsenic bioaccessibility and metabolism in soils by human gut microbiota using different in vitro methods combined with SHIME.
    Yin N; Du H; Zhang Z; Cai X; Li Z; Sun G; Cui Y
    Sci Total Environ; 2016 Oct; 566-567():1670-1677. PubMed ID: 27320743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils.
    Basta NT; Foster JN; Dayton EA; Rodriguez RR; Casteel SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1275-81. PubMed ID: 17654147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of in vivo relative bioavailability to in vitro bioaccessibility for arsenic in household dust from China and its implication for human exposure assessment.
    Li HB; Li J; Juhasz AL; Ma LQ
    Environ Sci Technol; 2014 Dec; 48(23):13652-9. PubMed ID: 25365687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of Different Iron Minerals on Bioaccessibility of Soil Arsenic Using
    Zhong SX; Yin GC; Huang RL; He HF; Chen ZL; Lin QT; Wang WK
    Huan Jing Ke Xue; 2017 Mar; 38(3):1201-1208. PubMed ID: 29965595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.