These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 25897723)
1. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils. Uematsu S; Smolders E; Sweeck L; Wannijn J; Van Hees M; Vandenhove H Sci Total Environ; 2015 Aug; 524-525():148-56. PubMed ID: 25897723 [TBL] [Abstract][Full Text] [Related]
2. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties. Uematsu S; Vandenhove H; Sweeck L; Van Hees M; Wannijn J; Smolders E J Environ Radioact; 2016 Mar; 153():51-60. PubMed ID: 26717351 [TBL] [Abstract][Full Text] [Related]
3. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan. Nakao A; Ogasawara S; Sano O; Ito T; Yanai J Sci Total Environ; 2014 Jan; 468-469():523-9. PubMed ID: 24055668 [TBL] [Abstract][Full Text] [Related]
4. Effects of radiocesium fixation potentials on Fujii K; Yamaguchi N; Imamura N; Kobayashi M; Kaneko S; Takahashi M J Environ Radioact; 2019 Mar; 198():126-134. PubMed ID: 30605859 [TBL] [Abstract][Full Text] [Related]
5. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination. Vandebroek L; Van Hees M; Delvaux B; Spaargaren O; Thiry Y J Environ Radioact; 2012 Feb; 104():87-93. PubMed ID: 21963466 [TBL] [Abstract][Full Text] [Related]
6. Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study. Fan Q; Yamaguchi N; Tanaka M; Tsukada H; Takahashi Y J Environ Radioact; 2014 Dec; 138():92-100. PubMed ID: 25201086 [TBL] [Abstract][Full Text] [Related]
7. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium. Gil-García C; Rigol A; Vidal M J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483 [TBL] [Abstract][Full Text] [Related]
8. Asian dust increases radiocesium retention ability of serpentine soils in Japan. Nakao A; Tomita M; Wagai R; Tanaka R; Yanai J; Kosaki T J Environ Radioact; 2019 Aug; 204():86-94. PubMed ID: 30986719 [TBL] [Abstract][Full Text] [Related]
9. Migration and bioavailability of (137)Cs in forest soil of southern Germany. Konopleva I; Klemt E; Konoplev A; Zibold G J Environ Radioact; 2009 Apr; 100(4):315-21. PubMed ID: 19167790 [TBL] [Abstract][Full Text] [Related]
10. Predictions of in situ solid/liquid distribution of radiocaesium in soils. Sanchez AL; Smolders E; Van den Brande K; Merckx R; Wright SM; Naylor C J Environ Radioact; 2002; 63(1):35-47. PubMed ID: 12230134 [TBL] [Abstract][Full Text] [Related]
11. Relationship between the radiocesium interception potential and the transfer of radiocesium from soil to soybean cultivated in 2011 in Fukushima Prefecture, Japan. Takeda A; Tsukada H; Yamaguchi N; Takeuchi M; Sato M; Nakao A; Hisamatsu S J Environ Radioact; 2014 Nov; 137():119-124. PubMed ID: 25036920 [TBL] [Abstract][Full Text] [Related]
12. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident. Koarashi J; Nishimura S; Atarashi-Andoh M; Matsunaga T; Sato T; Nagao S Chemosphere; 2018 Aug; 205():147-155. PubMed ID: 29689528 [TBL] [Abstract][Full Text] [Related]
14. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land. Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments. Dzene L; Ferrage E; Viennet JC; Tertre E; Hubert F Sci Rep; 2017 Feb; 7():43187. PubMed ID: 28233805 [TBL] [Abstract][Full Text] [Related]
16. Comparison of mechanistic and PLS-based regression models to predict radiocaesium distribution coefficients in soils. Gil-García CJ; Rigol A; Vidal M J Hazard Mater; 2011 Dec; 197():11-8. PubMed ID: 21993147 [TBL] [Abstract][Full Text] [Related]
17. The radiocaesium interception potential (RIP) at an agricultural site in Germany. Schimmack W; Auerswald K J Environ Radioact; 2004; 77(2):143-57. PubMed ID: 15312700 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the vertical distributions of Fukushima nuclear accident radiocesium in soil before and after the first rainy season, with physicochemical and mineralogical interpretations. Matsunaga T; Koarashi J; Atarashi-Andoh M; Nagao S; Sato T; Nagai H Sci Total Environ; 2013 Mar; 447():301-14. PubMed ID: 23391896 [TBL] [Abstract][Full Text] [Related]
19. Effects of zeolite and vermiculite addition on exchangeable radiocaesium in soil with accelerated ageing. Yamaguchi N; Hikono A; Saito T J Environ Radioact; 2019 Jul; 203():18-24. PubMed ID: 30844680 [TBL] [Abstract][Full Text] [Related]
20. Effect of clay content and wetting-and-drying on radiocaesium behaviour in a peat and a peaty podzol. Rosén K; Shand CA; Haak E; Cheshire MV Sci Total Environ; 2006 Sep; 368(2-3):795-803. PubMed ID: 16626782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]