These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25898090)

  • 1. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.
    Jones RJ; Massanet-Nicolau J; Guwy A; Premier GC; Dinsdale RM; Reilly M
    Bioresour Technol; 2015 Aug; 189():279-284. PubMed ID: 25898090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing fermentative hydrogen production with the removal of volatile fatty acids by electrodialysis.
    Wei P; Xia A; Liao Q; Sun C; Huang Y; Fu Q; Zhu X; Lin R
    Bioresour Technol; 2018 Sep; 263():437-443. PubMed ID: 29772505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors.
    Aydin S; Yesil H; Tugtas AE
    Bioresour Technol; 2018 Feb; 250():548-555. PubMed ID: 29197778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion.
    Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A
    J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentative volatile fatty acid production and recovery from grass using a novel combination of solids separation, pervaporation, and electrodialysis technologies.
    Jones RJ; Massanet-Nicolau J; Fernandez-Feito R; Dinsdale RM; Guwy AJ
    Bioresour Technol; 2021 Dec; 342():125926. PubMed ID: 34536837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.
    Hou G; Hao X; Zhang R; Wang J; Liu R; Liu C
    Bioresour Technol; 2016 Jul; 212():20-25. PubMed ID: 27070285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming nutrient loss during volatile fatty acid recovery from fermentation media by addition of electrodialysis to a polytetrafluoroethylene membrane stack.
    Chalmers Brown R; Tuffou R; Massanet Nicolau J; Dinsdale R; Guwy A
    Bioresour Technol; 2020 Apr; 301():122543. PubMed ID: 31927456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the syntrophic anaerobic digestion of volatile fatty acids using enriched cultures in a fixed-bed reactor.
    Amani T; Nosrati M; Mousavi SM; Kermanshahi RK
    Water Environ Res; 2012 May; 84(5):460-72. PubMed ID: 22852432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation.
    Qin W; Han S; Meng F; Chen K; Gao Y; Li J; Lin L; Hu E; Jiang J
    Sci Total Environ; 2024 Feb; 912():168764. PubMed ID: 38000740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system.
    Pan XR; Li WW; Huang L; Liu HQ; Wang YK; Geng YK; Kwan-Sing Lam P; Yu HQ
    Bioresour Technol; 2018 Jul; 260():61-67. PubMed ID: 29614452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of substrate concentration, hydraulic retention time and headspace pressure on acid production of protein by anaerobic fermentation.
    Li L; Wang Y; Li Y
    Bioresour Technol; 2019 Jul; 283():106-111. PubMed ID: 30901582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of acids from anaerobic acidification broth by liquid-liquid extraction.
    Alkaya E; Kaptan S; Ozkan L; Uludag-Demirer S; Demirer GN
    Chemosphere; 2009 Nov; 77(8):1137-42. PubMed ID: 19747710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter.
    Jones RJ; Massanet-Nicolau J; Mulder MJ; Premier G; Dinsdale R; Guwy A
    Bioresour Technol; 2017 Apr; 229():46-52. PubMed ID: 28107721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH.
    Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G
    J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A redox-based strategy to enhance propionic and butyric acid production during anaerobic fermentation.
    Chen B; Rupani PF; Azman S; Dewil R; Appels L
    Bioresour Technol; 2022 Oct; 361():127672. PubMed ID: 35878771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.
    Liang S; Wan C
    Bioresour Technol; 2015 Apr; 182():179-183. PubMed ID: 25698409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate.
    Magdalena JA; Greses S; González-Fernández C
    Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of volatile fatty acids (VFAs) on nutrient removal in SBR with biomass adapted to dairy wastewater.
    Janczukowicz W; Rodziewicz J; Czaplicka K; Kłodowska I; Mielcarek A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(7):809-16. PubMed ID: 23445424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation.
    Jankowska E; Chwiałkowska J; Stodolny M; Oleskowicz-Popiel P
    Bioresour Technol; 2015 Aug; 190():274-80. PubMed ID: 25965252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review.
    Wainaina S; Lukitawesa ; Kumar Awasthi M; Taherzadeh MJ
    Bioengineered; 2019 Dec; 10(1):437-458. PubMed ID: 31570035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.