BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25898271)

  • 1. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.
    Zhao H; Bai J
    ACS Appl Mater Interfaces; 2015 May; 7(18):9652-9. PubMed ID: 25898271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Strain Sensors Based on a Porous Polydimethylsiloxane Hybrid with Carbon Nanotubes and Graphene.
    He Y; Wu D; Zhou M; Zheng Y; Wang T; Lu C; Zhang L; Liu H; Liu C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15572-15583. PubMed ID: 33760608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly.
    Wang S; Zhang X; Wu X; Lu C
    Soft Matter; 2016 Jan; 12(3):845-52. PubMed ID: 26542376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites.
    Choi K; Yu C
    PLoS One; 2012; 7(9):e44977. PubMed ID: 23024778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.
    Wu C; Huang X; Wu X; Xie L; Yang K; Jiang P
    Nanoscale; 2013 May; 5(9):3847-55. PubMed ID: 23525168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible piezo-resistive strain sensors using all-polydimethylsiloxane based hybrid nanocomposites for wearable electronics.
    Mahato R; Masiul Islam S; Maurya RK; Kumar S; Purohit G; Singh S
    Phys Chem Chem Phys; 2023 Dec; 26(1):95-104. PubMed ID: 38054271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films.
    Yang SB; Kong BS; Jung DH; Baek YK; Han CS; Oh SK; Jung HT
    Nanoscale; 2011 Apr; 3(4):1361-73. PubMed ID: 21359350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.
    Koga H; Saito T; Kitaoka T; Nogi M; Suganuma K; Isogai A
    Biomacromolecules; 2013 Apr; 14(4):1160-5. PubMed ID: 23428212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conductive and stretchable polymer composites based on graphene/MWCNT network.
    Chen M; Tao T; Zhang L; Gao W; Li C
    Chem Commun (Camb); 2013 Feb; 49(16):1612-4. PubMed ID: 23334065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.
    Vilčáková J; Moučka R; Svoboda P; Ilčíková M; Kazantseva N; Hřibová M; Mičušík M; Omastová M
    Molecules; 2012 Nov; 17(11):13157-74. PubMed ID: 23128093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties.
    Gao J; Hu M; Dong Y; Li RK
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7758-64. PubMed ID: 23910565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube-based bioceramic grafts for electrotherapy of bone.
    Mata D; Horovistiz AL; Branco I; Ferro M; Ferreira NM; Belmonte M; Lopes MA; Silva RF; Oliveira FJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():360-8. PubMed ID: 24268270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer.
    Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H
    ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers.
    Yakovenko O; Matzui L; Danylova G; Zadorozhnii V; Vovchenko L; Perets Y; Lazarenko O
    Nanoscale Res Lett; 2017 Dec; 12(1):471. PubMed ID: 28759986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite.
    Pan J; Liu S; Yang Y; Lu J
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29890633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Filler Alignment on Piezo-Resistive and Mechanical Properties of Carbon Nanotube Composites.
    Kim H; Hong SK; Ryu JK; Park SH
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32517341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Mechanical Property of Polyamide-6/Graphite Sheet Composites with Segregated 3D Network Binary Structure for High Thermal Conductivity.
    Gao Y; Li Y; Kong X; Ma M
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range.
    Doshi SM; Thostenson ET
    ACS Sens; 2018 Jul; 3(7):1276-1282. PubMed ID: 29943577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets.
    Perets Y; Aleksandrovych L; Melnychenko M; Lazarenko O; Vovchenko L; Matzui L
    Nanoscale Res Lett; 2017 Dec; 12(1):406. PubMed ID: 28618717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical percolation networks of carbon nanotubes in a shear flow.
    Kwon G; Heo Y; Shin K; Sung BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011143. PubMed ID: 22400548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.