These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25898271)

  • 41. Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures.
    Feng C; Ni H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19732-8. PubMed ID: 27391206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanical, Electrical, and Piezoresistive Sensing Characteristics of Epoxy-Based Composites Incorporating Hybridized Networks of Carbon Nanotubes, Graphene, Carbon Nanofibers, or Graphite Nanoplatelets.
    Wang X; Wang J; Biswas S; Kim H; Nam I
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Soft, highly conductive nanotube sponges and composites with controlled compressibility.
    Gui X; Cao A; Wei J; Li H; Jia Y; Li Z; Fan L; Wang K; Zhu H; Wu D
    ACS Nano; 2010 Apr; 4(4):2320-6. PubMed ID: 20361757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrically Conductive CNT Composites at Loadings below Theoretical Percolation Values.
    Earp B; Simpson J; Phillips J; Grbovic D; Vidmar S; McCarthy J; Luhrs CC
    Nanomaterials (Basel); 2019 Mar; 9(4):. PubMed ID: 30934937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conductive macroporous composite chitosan-carbon nanotube scaffolds.
    Lau C; Cooney MJ; Atanassov P
    Langmuir; 2008 Jun; 24(13):7004-10. PubMed ID: 18517231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphite nanoplatelet enabled embeddable fiber sensor for in situ curing monitoring and structural health monitoring of polymeric composites.
    Luo S; Liu T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9314-20. PubMed ID: 24844694
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exfoliated Graphite Nanoplatelet-Carbon Nanotube Hybrid Composites for Compression Sensing.
    Jeong C; Park YB
    ACS Omega; 2020 Feb; 5(6):2630-2639. PubMed ID: 32095686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyisoprene-multi wall carbon nanotube composite structure for flexible pressure sensor application.
    Knite M; Zavickis J; Teteris V; Linarts A
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8677-81. PubMed ID: 22400242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Smart Graphite-Cement Composites with Low Percolation Threshold.
    Frąc M; Szołdra P; Pichór W
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming.
    Hamidinejad M; Zhao B; Zandieh A; Moghimian N; Filleter T; Park CB
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30752-30761. PubMed ID: 30124039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.
    Xiang C; Lu W; Zhu Y; Sun Z; Yan Z; Hwang CC; Tour JM
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):131-6. PubMed ID: 22117617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Extremely Inexpensive, Simple, and Flexible Carbon Fiber Electrode for Tunable Elastomeric Piezo-Resistive Sensors and Devices Realized by LSTM RNN.
    Cho MY; Lee JH; Kim SH; Kim JS; Timilsina S
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11910-11919. PubMed ID: 30844231
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.
    Li YQ; Huang P; Zhu WB; Fu SY; Hu N; Liao K
    Sci Rep; 2017 Mar; 7():45013. PubMed ID: 28322301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical vapor deposition synthesis of carbon nanotube-graphene nanosheet hybrids and their application in polymer composites.
    Dichiara A; Yuan JK; Yao SH; Sylvestre A; Bai J
    J Nanosci Nanotechnol; 2012 Sep; 12(9):6935-40. PubMed ID: 23035417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon Nanotubes Grown on Graphite Films as Effective Interface Enhancement for an Aluminum Matrix Laminated Composite in Thermal Management Applications.
    Chang J; Zhang Q; Lin Y; Zhou C; Yang W; Yan L; Wu G
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38350-38358. PubMed ID: 30360077
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane.
    Kim NP
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32471243
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor.
    Gau C; Ko HS; Chen HT
    Nanotechnology; 2009 May; 20(18):185503. PubMed ID: 19420615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film.
    Wang M; Chen H; Lin W; Li Z; Li Q; Chen M; Meng F; Xing Y; Yao Y; Wong CP; Li Q
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):539-44. PubMed ID: 24341574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance carbon nanotube transparent conductive films by scalable dip coating.
    Mirri F; Ma AW; Hsu TT; Behabtu N; Eichmann SL; Young CC; Tsentalovich DE; Pasquali M
    ACS Nano; 2012 Nov; 6(11):9737-44. PubMed ID: 23038980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.