These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25898319)

  • 1. Differential assemblage of functional units in paddy soil microbiomes.
    Kim Y; Liesack W
    PLoS One; 2015; 10(4):e0122221. PubMed ID: 25898319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.
    Noll M; Matthies D; Frenzel P; Derakshani M; Liesack W
    Environ Microbiol; 2005 Mar; 7(3):382-95. PubMed ID: 15683399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription of mcrA Gene Decreases Upon Prolonged Non-flooding Period in a Methanogenic Archaeal Community of a Paddy-Upland Rotational Field Soil.
    Liu D; Nishida M; Takahashi T; Asakawa S
    Microb Ecol; 2018 Apr; 75(3):751-760. PubMed ID: 28890994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils.
    Holmes DE; Shrestha PM; Walker DJF; Dang Y; Nevin KP; Woodard TL; Lovley DR
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiology of flooded rice paddies.
    Liesack W; Schnell S; Revsbech NP
    FEMS Microbiol Rev; 2000 Dec; 24(5):625-45. PubMed ID: 11077155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil.
    Reim A; Lüke C; Krause S; Pratscher J; Frenzel P
    ISME J; 2012 Nov; 6(11):2128-39. PubMed ID: 22695859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Microbial metabolism in typical flooded paddy soils ].
    Cai Y; Wu Y; Wang S; Yan X; Zhu Y; Jia Z
    Wei Sheng Wu Xue Bao; 2014 Sep; 54(9):1033-44. PubMed ID: 25522592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of processes involved in methanogenic degradation of rice straw in anoxic paddy soil.
    Glissmann K; Weber S; Conrad R
    Environ Microbiol; 2001 Aug; 3(8):502-11. PubMed ID: 11578311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.
    Cabezas A; Pommerenke B; Boon N; Friedrich MW
    Environ Microbiol Rep; 2015 Jun; 7(3):489-97. PubMed ID: 25683328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.
    Wang J; Dong H; Wang W; Gu JD
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2675-86. PubMed ID: 24077726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil.
    Lueders T; Pommerenke B; Friedrich MW
    Appl Environ Microbiol; 2004 Oct; 70(10):5778-86. PubMed ID: 15466514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional activity of paddy soil bacterial communities.
    Shrestha PM; Kube M; Reinhardt R; Liesack W
    Environ Microbiol; 2009 Apr; 11(4):960-70. PubMed ID: 19170728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predominant but Previously-overlooked Prokaryotic Drivers of Reductive Nitrogen Transformation in Paddy Soils, Revealed by Metatranscriptomics.
    Masuda Y; Itoh H; Shiratori Y; Isobe K; Otsuka S; Senoo K
    Microbes Environ; 2017 Jun; 32(2):180-183. PubMed ID: 28442658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA.
    Hori T; Noll M; Igarashi Y; Friedrich MW; Conrad R
    Appl Environ Microbiol; 2007 Jan; 73(1):101-9. PubMed ID: 17071795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical Distribution of Functional Potential and Active Microbial Communities in Meromictic Lake Kivu.
    İnceoğlu Ö; Llirós M; Crowe SA; García-Armisen T; Morana C; Darchambeau F; Borges AV; Descy JP; Servais P
    Microb Ecol; 2015 Oct; 70(3):596-611. PubMed ID: 25912922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, variation, and assembly of the root-associated microbiomes of rice.
    Edwards J; Johnson C; Santos-Medellín C; Lurie E; Podishetty NK; Bhatnagar S; Eisen JA; Sundaresan V
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):E911-20. PubMed ID: 25605935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change.
    Conrad R; Klose M; Noll M
    Environ Microbiol; 2009 Jul; 11(7):1844-53. PubMed ID: 19508556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodologies for probing the metatranscriptome of grassland soil.
    Garoutte A; Cardenas E; Tiedje J; Howe A
    J Microbiol Methods; 2016 Dec; 131():122-129. PubMed ID: 27793585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient O
    Wilmoth JL; Moran MA; Thompson A
    Microbiome; 2018 Oct; 6(1):189. PubMed ID: 30352628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.
    Bao Q; Huang Y; Wang F; Nie S; Nicol GW; Yao H; Ding L
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5989-98. PubMed ID: 26923143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.