These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 25898409)
21. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Roncal T; Oviedo A; López de Armentia I; Fernández L; Villarán MC Carbohydr Res; 2007 Dec; 342(18):2750-6. PubMed ID: 17889843 [TBL] [Abstract][Full Text] [Related]
22. Effects of concentration, degree of deacetylation and molecular weight on emulsifying properties of chitosan. Li X; Xia W Int J Biol Macromol; 2011 Jun; 48(5):768-72. PubMed ID: 21382402 [TBL] [Abstract][Full Text] [Related]
23. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Younes I; Sellimi S; Rinaudo M; Jellouli K; Nasri M Int J Food Microbiol; 2014 Aug; 185():57-63. PubMed ID: 24929684 [TBL] [Abstract][Full Text] [Related]
24. Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Notin L; Viton C; David L; Alcouffe P; Rochas C; Domard A Acta Biomater; 2006 Jul; 2(4):387-402. PubMed ID: 16765879 [TBL] [Abstract][Full Text] [Related]
25. Comparison of physicochemical, binding, and antibacterial properties of chitosans prepared without and with deproteinization process. No HK; Lee SH; Park NY; Meyers SP J Agric Food Chem; 2003 Dec; 51(26):7659-63. PubMed ID: 14664525 [TBL] [Abstract][Full Text] [Related]
26. Production and physicochemical properties of fungal chitosans with efficacy to inhibit mycelial growth activity of pathogenic fungi. Almeida RR; Pinto NAR; Soares IC; Clarindo Ferreira LB; Lima LL; Leitão AA; Guimarães LGL Carbohydr Res; 2023 Mar; 525():108762. PubMed ID: 36801499 [TBL] [Abstract][Full Text] [Related]
27. Effect of chitosan molecular weight and deacetylation degree on hemostasis. Yang J; Tian F; Wang Z; Wang Q; Zeng YJ; Chen SQ J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):131-7. PubMed ID: 17514656 [TBL] [Abstract][Full Text] [Related]
28. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Huang M; Khor E; Lim LY Pharm Res; 2004 Feb; 21(2):344-53. PubMed ID: 15032318 [TBL] [Abstract][Full Text] [Related]
29. Determining the influence of N-acetylation on water sorption in chitosan films. Gámiz-González MA; Piskin AE; Pandis C; Chatzimanolis-Moustakas C; Kyritsis A; Marí B; Ribelles JL; Vidaurre A Carbohydr Polym; 2015 Nov; 133():110-6. PubMed ID: 26344262 [TBL] [Abstract][Full Text] [Related]
30. Effects of material property and heat treatment on nanomechanical properties of chitosan films. Majd S; Yuan Y; Mishra S; Haggard WO; Bumgardner JD J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):283-9. PubMed ID: 19072977 [TBL] [Abstract][Full Text] [Related]
31. Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism. Mellegård H; Strand SP; Christensen BE; Granum PE; Hardy SP Int J Food Microbiol; 2011 Jul; 148(1):48-54. PubMed ID: 21605923 [TBL] [Abstract][Full Text] [Related]
32. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Geng X; Kwon OH; Jang J Biomaterials; 2005 Sep; 26(27):5427-32. PubMed ID: 15860199 [TBL] [Abstract][Full Text] [Related]
33. Isolation and characterization of chitosan from different local insects in Egypt. Marei NH; El-Samie EA; Salah T; Saad GR; Elwahy AH Int J Biol Macromol; 2016 Jan; 82():871-7. PubMed ID: 26459168 [TBL] [Abstract][Full Text] [Related]
34. Rapid and efficient extraction of chitin and chitosan for scale-up production: Effect of process parameters on deacetylation degree and molecular weight. El Knidri H; Dahmani J; Addaou A; Laajeb A; Lahsini A Int J Biol Macromol; 2019 Oct; 139():1092-1102. PubMed ID: 31404606 [TBL] [Abstract][Full Text] [Related]
35. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Kleine-Brueggeney H; Zorzi GK; Fecker T; El Gueddari NE; Moerschbacher BM; Goycoolea FM Colloids Surf B Biointerfaces; 2015 Nov; 135():99-108. PubMed ID: 26241921 [TBL] [Abstract][Full Text] [Related]
36. In vitro and in vivo degradation behavior of acetylated chitosan porous beads. Lim SM; Song DK; Oh SH; Lee-Yoon DS; Bae EH; Lee JH J Biomater Sci Polym Ed; 2008; 19(4):453-66. PubMed ID: 18318958 [TBL] [Abstract][Full Text] [Related]
37. Controlled depolymerisation assessed by analytical ultracentrifugation of low molecular weight chitosan for use in archaeological conservation. Wakefield JMK; Gillis RB; Adams GG; McQueen CMA; Harding SE Eur Biophys J; 2018 Oct; 47(7):769-775. PubMed ID: 29550902 [TBL] [Abstract][Full Text] [Related]
38. Correlation of chitosan's rheological properties and its ability to electrospin. Klossner RR; Queen HA; Coughlin AJ; Krause WE Biomacromolecules; 2008 Oct; 9(10):2947-53. PubMed ID: 18785774 [TBL] [Abstract][Full Text] [Related]
39. Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Chen RH; Tsaih ML Int J Biol Macromol; 1998 Aug; 23(2):135-41. PubMed ID: 9730167 [TBL] [Abstract][Full Text] [Related]
40. Physicochemical and biofunctional properties of crab chitosan nanoparticles. Nguyen TH; Kwak HS; Kim SM J Nanosci Nanotechnol; 2013 Aug; 13(8):5296-304. PubMed ID: 23882757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]