BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 25898621)

  • 1. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating LIDAR and forest inventories to fill the trees outside forests data gap.
    Johnson KD; Birdsey R; Cole J; Swatantran A; O'Neil-Dunne J; Dubayah R; Lister A
    Environ Monit Assess; 2015 Oct; 187(10):623. PubMed ID: 26364065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amazonian landscapes and the bias in field studies of forest structure and biomass.
    Marvin DC; Asner GP; Knapp DE; Anderson CB; Martin RE; Sinca F; Tupayachi R
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5224-32. PubMed ID: 25422434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characterization of mid-subtropical evergreen broad-leaved forest gap based on light detection and ranging (LiDAR)].
    Liu F; Tan C; Wang H; Zhang J; Wan Y; Long JP; Liu RX
    Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3611-8. PubMed ID: 27111996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of coniferous forest aboveground biomass with aggregated airborne small-footprint LiDAR full-waveforms.
    Qin H; Wang C; Xi X; Tian J; Zhou G
    Opt Express; 2017 Aug; 25(16):A851-A869. PubMed ID: 29041100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and mapping basal area of Pinus taeda L. plantation using airborne LiDAR data.
    Silva CA; Klauberg C; Hudak AT; Vierling LA; Fennema SJ; Corte APD
    An Acad Bras Cienc; 2017; 89(3):1895-1905. PubMed ID: 28813098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.
    Garcia M; Saatchi S; Ferraz A; Silva CA; Ustin S; Koltunov A; Balzter H
    Carbon Balance Manag; 2017 Dec; 12(1):4. PubMed ID: 28413848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation.
    Silva CA; Klauberg C; Hudak AT; Vierling LA; Liesenberg V; Bernett LG; Scheraiber CF; Schoeninger ER
    An Acad Bras Cienc; 2018; 90(1):295-309. PubMed ID: 29641763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual tree segmentation of airborne and UAV LiDAR point clouds based on the watershed and optimized connection center evolution clustering.
    Li Y; Xie D; Wang Y; Jin S; Zhou K; Zhang Z; Li W; Zhang W; Mu X; Yan G
    Ecol Evol; 2023 Jul; 13(7):e10297. PubMed ID: 37456074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.
    Luo L; Zhai Q; Su Y; Ma Q; Kelly M; Guo Q
    Opt Express; 2018 May; 26(10):A562-A578. PubMed ID: 29801269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR.
    Spriggs RA; Vanderwel MC; Jones TA; Caspersen JP; Coomes DA
    PLoS One; 2019; 14(4):e0215238. PubMed ID: 31002682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropical tree size-frequency distributions from airborne lidar.
    Ferraz A; Saatchi SS; Longo M; Clark DB
    Ecol Appl; 2020 Oct; 30(7):e02154. PubMed ID: 32347996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.
    Fricker GA; Wolf JA; Saatchi SS; Gillespie TW
    Ecol Appl; 2015 Oct; 25(7):1776-89. PubMed ID: 26591445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of aboveground biomass in alpine forests: a semi-empirical approach considering canopy transparency derived from airborne LiDAR data.
    Jochem A; Hollaus M; Rutzinger M; Höfle B
    Sensors (Basel); 2011; 11(1):278-95. PubMed ID: 22346577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China.
    Zhong H; Lin W; Liu H; Ma N; Liu K; Cao R; Wang T; Ren Z
    Front Plant Sci; 2022; 13():964769. PubMed ID: 36212338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].
    Zuo SD; Ren Y; Weng X; Ding HF; Luo YJ
    Ying Yong Sheng Tai Xue Bao; 2015 Feb; 26(2):356-62. PubMed ID: 26094447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal airborne LiDAR approach for tropical forest carbon mapping.
    Asner GP; Mascaro J; Muller-Landau HC; Vieilledent G; Vaudry R; Rasamoelina M; Hall JS; van Breugel M
    Oecologia; 2012 Apr; 168(4):1147-60. PubMed ID: 22033763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Laser Vegetation Detecting Sensor: A Full Waveform, Large-Footprint, Airborne Laser Altimeter for Monitoring Forest Resources.
    Hu Y; Wu F; Sun Z; Lister A; Gao X; Li W; Peng D
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Aboveground Carbon Density of Coniferous Forests by Combining Airborne LiDAR and Allometry Models at Plot Level.
    Hao H; Li W; Zhao X; Chang Q; Zhao P
    Front Plant Sci; 2019; 10():917. PubMed ID: 31354780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.