These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25898687)

  • 1. [Simultaneous production of hydrogen and volatile fatty acid from Macrocystis pyrifera].
    Zhao XX; Fan XL; Guo RB; Xue ZX; Yang ZM; Yuan X; Qiu YL
    Huan Jing Ke Xue; 2015 Jan; 36(1):357-64. PubMed ID: 25898687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion.
    Yin DM; Mahboubi A; Wainaina S; Qiao W; Taherzadeh MJ
    Bioresour Technol; 2021 Jun; 330():124992. PubMed ID: 33744736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion.
    Lukitawesa ; Patinvoh RJ; Millati R; Sárvári-Horváth I; Taherzadeh MJ
    Bioengineered; 2020 Dec; 11(1):39-52. PubMed ID: 31880192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation of Chlorella sp. for anaerobic bio-hydrogen production: influences of inoculum-substrate ratio, volatile fatty acids and NADH.
    Sun J; Yuan X; Shi X; Chu C; Guo R; Kong H
    Bioresour Technol; 2011 Nov; 102(22):10480-5. PubMed ID: 21967710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.
    Wang K; Yin J; Shen D; Li N
    Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment of macroalgae for volatile fatty acid production.
    Pham TN; Um Y; Yoon HH
    Bioresour Technol; 2013 Oct; 146():754-757. PubMed ID: 23942360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial pH-driven production of volatile fatty acid from hybrid Pennisetum.
    Xing T; Wang Z; Zhen F; Liu H; Wo D; Li L; Guo Y; Kong X; Sun Y
    Bioresour Technol; 2022 Mar; 347():126426. PubMed ID: 34838978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile fatty acid recovery by anaerobic fermentation from blue-green algae: Effect of pretreatment.
    Cho HU; Kim HG; Kim YM; Park JM
    Bioresour Technol; 2017 Nov; 244(Pt 2):1433-1438. PubMed ID: 28549808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion.
    Eryildiz B; Lukitawesa ; Taherzadeh MJ
    Bioresour Technol; 2020 Apr; 302():122800. PubMed ID: 31986336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation.
    Zhang Q; Lu Y; Zhou X; Wang X; Zhu J
    Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas production from Macrocystis pyrifera biomass in seawater system.
    Fan X; Guo R; Yuan X; Qiu Y; Yang Z; Wang F; Sun M; Zhao X
    Bioresour Technol; 2015 Dec; 197():339-47. PubMed ID: 26344241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The capture technology matters: Composition of municipal wastewater solids drives complexity of microbial community structure and volatile fatty acid profile during anaerobic fermentation.
    Brison A; Rossi P; Gelb A; Derlon N
    Sci Total Environ; 2022 Apr; 815():152762. PubMed ID: 34990680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment.
    Park GW; Kim I; Jung K; Seo C; Han JI; Chang HN; Kim YC
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1623-7. PubMed ID: 25764527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.
    Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H
    Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste.
    Lu Y; Zhang Q; Wang X; Zhou X; Zhu J
    Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.
    Ho L; Ho G
    Water Res; 2012 Sep; 46(14):4339-50. PubMed ID: 22739499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?
    Ma H; Chen X; Liu H; Liu H; Fu B
    Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of volatile fatty acid accumulation from waste: Effect of inoculum pretreatment.
    Jayakrishnan U; Deka D; Das G
    Water Environ Res; 2021 Jul; 93(7):1019-1031. PubMed ID: 33259657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.
    Li X; Swan JE; Nair GR; Langdon AG
    Biotechnol Appl Biochem; 2015; 62(4):476-82. PubMed ID: 25274086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.