These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25898904)

  • 1. Graphene-based materials for flexible supercapacitors.
    Shao Y; El-Kady MF; Wang LJ; Zhang Q; Li Y; Wang H; Mousavi MF; Kaner RB
    Chem Soc Rev; 2015 Jun; 44(11):3639-65. PubMed ID: 25898904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress on Flexible and Wearable Supercapacitors.
    Xue Q; Sun J; Huang Y; Zhu M; Pei Z; Li H; Wang Y; Li N; Zhang H; Zhi C
    Small; 2017 Dec; 13(45):. PubMed ID: 28941073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and stackable laser-induced graphene supercapacitors.
    Peng Z; Lin J; Ye R; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3414-9. PubMed ID: 25584857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs.
    Liang J; Jiang C; Wu W
    Nanoscale; 2019 Apr; 11(15):7041-7061. PubMed ID: 30931460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conducting polymer nanowire arrays for high performance supercapacitors.
    Wang K; Wu H; Meng Y; Wei Z
    Small; 2014 Jan; 10(1):14-31. PubMed ID: 23959804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.
    Cao L; Yang S; Gao W; Liu Z; Gong Y; Ma L; Shi G; Lei S; Zhang Y; Zhang S; Vajtai R; Ajayan PM
    Small; 2013 Sep; 9(17):2905-10. PubMed ID: 23589515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two dimensional nanomaterials for flexible supercapacitors.
    Peng X; Peng L; Wu C; Xie Y
    Chem Soc Rev; 2014 May; 43(10):3303-23. PubMed ID: 24614864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.
    Sun G; Zhang X; Lin R; Yang J; Zhang H; Chen P
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4651-6. PubMed ID: 25694387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.
    Li X; Zhao T; Chen Q; Li P; Wang K; Zhong M; Wei J; Wu D; Wei B; Zhu H
    Phys Chem Chem Phys; 2013 Nov; 15(41):17752-7. PubMed ID: 24045695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
    Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J
    Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system.
    Wang X; Liu B; Liu R; Wang Q; Hou X; Chen D; Wang R; Shen G
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1849-53. PubMed ID: 24505005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7020-6. PubMed ID: 23167563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic Fiber Supercapacitors for Wearable Energy Storage.
    Qin S; Seyedin S; Zhang J; Wang Z; Yang F; Liu Y; Chen J; Razal JM
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800103. PubMed ID: 29774612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Transfer Salt and Graphene Heterostructure-Based Micro-Supercapacitors with Alternating Current Line-Filtering Performance.
    Zhao D; Chang W; Lu C; Yang C; Jiang K; Chang X; Lin H; Zhang F; Han S; Hou Z; Zhuang X
    Small; 2019 Nov; 15(48):e1901494. PubMed ID: 31074934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.