These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25898919)
1. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Shahabi H; Hashim M Sci Rep; 2015 Apr; 5():9899. PubMed ID: 25898919 [TBL] [Abstract][Full Text] [Related]
2. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Ozioko OH; Igwe O Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278 [TBL] [Abstract][Full Text] [Related]
3. GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India. Das J; Saha P; Mitra R; Alam A; Kamruzzaman M Heliyon; 2023 May; 9(5):e16186. PubMed ID: 37234665 [TBL] [Abstract][Full Text] [Related]
4. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran. Eitvandi N; Sarikhani R; Derikvand S Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313 [TBL] [Abstract][Full Text] [Related]
5. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. Nhu VH; Mohammadi A; Shahabi H; Ahmad BB; Al-Ansari N; Shirzadi A; Clague JJ; Jaafari A; Chen W; Nguyen H Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650595 [TBL] [Abstract][Full Text] [Related]
6. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility. Aksoy H Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086 [TBL] [Abstract][Full Text] [Related]
8. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
10. Development of landslide susceptibility maps of Tripura, India using GIS and analytical hierarchy process (AHP). Nath NK; Gautam VK; Pande CB; Mishra LR; Raju JT; Moharir KN; Rane NL Environ Sci Pollut Res Int; 2024 Jan; 31(5):7481-7497. PubMed ID: 38159190 [TBL] [Abstract][Full Text] [Related]
11. Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey. Karaman MO; Çabuk SN; Pekkan E Environ Sci Pollut Res Int; 2022 Dec; 29(60):91285-91305. PubMed ID: 35882738 [TBL] [Abstract][Full Text] [Related]
12. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Das S; Sarkar S; Kanungo DP Environ Monit Assess; 2022 Mar; 194(3):234. PubMed ID: 35229227 [TBL] [Abstract][Full Text] [Related]
13. Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi'an Region, China. Liu X; Shao S; Shao S Sci Rep; 2024 Feb; 14(1):2941. PubMed ID: 38316944 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling. Zhang T; Han L; Chen W; Shahabi H Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266608 [TBL] [Abstract][Full Text] [Related]
15. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356 [TBL] [Abstract][Full Text] [Related]
16. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Lee S Environ Manage; 2004 Aug; 34(2):223-32. PubMed ID: 15559946 [TBL] [Abstract][Full Text] [Related]
17. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Akgun A; Kıncal C; Pradhan B Environ Monit Assess; 2012 Sep; 184(9):5453-70. PubMed ID: 21915598 [TBL] [Abstract][Full Text] [Related]
18. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related]
19. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Huang J; Zeng X; Ding L; Yin Y; Li Y Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489 [TBL] [Abstract][Full Text] [Related]
20. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Chen W; Peng J; Hong H; Shahabi H; Pradhan B; Liu J; Zhu AX; Pei X; Duan Z Sci Total Environ; 2018 Jun; 626():1121-1135. PubMed ID: 29898519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]