BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25899137)

  • 1. Dynamic recruitment of resting state sub-networks.
    O'Neill GC; Bauer M; Woolrich MW; Morris PG; Barnes GR; Brookes MJ
    Neuroimage; 2015 Jul; 115():85-95. PubMed ID: 25899137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.
    Maldjian JA; Davenport EM; Whitlow CT
    Neuroimage; 2014 Aug; 96():88-94. PubMed ID: 24699016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.
    Hindriks R; Micheli C; Bosman CA; Oostenveld R; Lewis C; Mantini D; Fries P; Deco G
    Neuroimage; 2018 Nov; 181():347-358. PubMed ID: 29886144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering dynamic task-modulated functional networks with specific spectral modes using MEG.
    Zhu Y; Liu J; Ye C; Mathiak K; Astikainen P; Ristaniemi T; Cong F
    Neuroimage; 2020 Sep; 218():116924. PubMed ID: 32445878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity.
    Brookes MJ; O'Neill GC; Hall EL; Woolrich MW; Baker A; Palazzo Corner S; Robson SE; Morris PG; Barnes GR
    Neuroimage; 2014 May; 91():282-99. PubMed ID: 24418505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing MEG and high-density EEG for intrinsic functional connectivity mapping.
    Coquelet N; De Tiège X; Destoky F; Roshchupkina L; Bourguignon M; Goldman S; Peigneux P; Wens V
    Neuroimage; 2020 Apr; 210():116556. PubMed ID: 31972279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic modular fingerprints of the human brain at rest.
    Kabbara A; Paban V; Hassan M
    Neuroimage; 2021 Feb; 227():117674. PubMed ID: 33359336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task induced modulation of neural oscillations in electrophysiological brain networks.
    Brookes MJ; Liddle EB; Hale JR; Woolrich MW; Luckhoo H; Liddle PF; Morris PG
    Neuroimage; 2012 Dec; 63(4):1918-30. PubMed ID: 22906787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and characterizing resting state networks in temporally dynamic functional connectomes.
    Zhang X; Li X; Jin C; Chen H; Li K; Zhu D; Jiang X; Zhang T; Lv J; Hu X; Han J; Zhao Q; Guo L; Li L; Liu T
    Brain Topogr; 2014 Nov; 27(6):747-65. PubMed ID: 24903106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-related changes in MEG functional connectivity reveal the task-positive sensorimotor network.
    Bardouille T; Boe S
    PLoS One; 2012; 7(10):e48682. PubMed ID: 23119088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large scale networks for human hand-object interaction: Functionally distinct roles for two premotor regions identified intraoperatively.
    Simone L; Fornia L; Viganò L; Sambataro F; Rossi M; Leonetti A; Puglisi G; Howells H; Bellacicca A; Bello L; Cerri G
    Neuroimage; 2020 Jan; 204():116215. PubMed ID: 31557544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity.
    van Meer MP; van der Marel K; Wang K; Otte WM; El Bouazati S; Roeling TA; Viergever MA; Berkelbach van der Sprenkel JW; Dijkhuizen RM
    J Neurosci; 2010 Mar; 30(11):3964-72. PubMed ID: 20237267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrophysiological connectome is maintained in healthy elders: a power envelope correlation MEG study.
    Coquelet N; Mary A; Peigneux P; Goldman S; Wens V; De Tiège X
    Sci Rep; 2017 Oct; 7(1):13984. PubMed ID: 29070789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of task-related electrophysiological networks: a benchmarking study.
    Tabbal J; Kabbara A; Khalil M; Benquet P; Hassan M
    Neuroimage; 2021 May; 231():117829. PubMed ID: 33549758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity.
    Tewarie P; Liuzzi L; O'Neill GC; Quinn AJ; Griffa A; Woolrich MW; Stam CJ; Hillebrand A; Brookes MJ
    Neuroimage; 2019 Oct; 200():38-50. PubMed ID: 31207339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the electrophysiological basis of resting state networks using magnetoencephalography.
    Brookes MJ; Woolrich M; Luckhoo H; Price D; Hale JR; Stephenson MC; Barnes GR; Smith SM; Morris PG
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16783-8. PubMed ID: 21930901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.
    Nugent AC; Luber B; Carver FW; Robinson SE; Coppola R; Zarate CA
    Hum Brain Mapp; 2017 Feb; 38(2):779-791. PubMed ID: 27770478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution.
    Hillebrand A; Barnes GR; Bosboom JL; Berendse HW; Stam CJ
    Neuroimage; 2012 Feb; 59(4):3909-21. PubMed ID: 22122866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.