BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25899173)

  • 21. Dual Passivation of CsPbI
    Jia D; Chen J; Yu M; Liu J; Johansson EMJ; Hagfeldt A; Zhang X
    Small; 2020 Jun; 16(24):e2001772. PubMed ID: 32419275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
    Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y
    ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices.
    Zhang Y; Wu G; Liu F; Ding C; Zou Z; Shen Q
    Chem Soc Rev; 2020 Jan; 49(1):49-84. PubMed ID: 31825404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
    Boehme SC; Azpiroz JM; Aulin YV; Grozema FC; Vanmaekelbergh D; Siebbeles LD; Infante I; Houtepen AJ
    Nano Lett; 2015 May; 15(5):3056-66. PubMed ID: 25853555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complete in-gap electronic structure of colloidal quantum dot solids and its correlation with electronic transport and photovoltaic performance.
    Katsiev K; Ip AH; Fischer A; Tanabe I; Zhang X; Kirmani AR; Voznyy O; Rollny LR; Chou KW; Thon SM; Carey GH; Cui X; Amassian A; Dowben P; Sargent EH; Bakr OM
    Adv Mater; 2014 Feb; 26(6):937-42. PubMed ID: 24243769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots.
    Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S
    ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient.
    Choi J; Choi MJ; Kim J; Dinic F; Todorovic P; Sun B; Wei M; Baek SW; Hoogland S; García de Arquer FP; Voznyy O; Sargent EH
    Adv Mater; 2020 Feb; 32(7):e1906497. PubMed ID: 31930771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B; Vafaie M; Levina L; Wei M; Dong Y; Gao Y; Kung HT; Biondi M; Proppe AH; Chen B; Choi MJ; Sagar LK; Voznyy O; Kelley SO; Laquai F; Lu ZH; Hoogland S; García de Arquer FP; Sargent EH
    Nano Lett; 2020 May; 20(5):3694-3702. PubMed ID: 32227970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.
    Gilmore RH; Lee EM; Weidman MC; Willard AP; Tisdale WA
    Nano Lett; 2017 Feb; 17(2):893-901. PubMed ID: 28100050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-emitting quantum dot transistors: emission at high charge carrier densities.
    Schornbaum J; Zakharko Y; Held M; Thiemann S; Gannott F; Zaumseil J
    Nano Lett; 2015 Mar; 15(3):1822-8. PubMed ID: 25652433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications.
    Chistyakov AA; Zvaigzne MA; Nikitenko VR; Tameev AR; Martynov IL; Prezhdo OV
    J Phys Chem Lett; 2017 Sep; 8(17):4129-4139. PubMed ID: 28799772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Room-Temperature 15% Efficient Mid-Infrared HgTe Colloidal Quantum Dot Photodiodes.
    Peterson JC; Guyot-Sionnest P
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19163-19169. PubMed ID: 37022942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.
    Jeong KS; Tang J; Liu H; Kim J; Schaefer AW; Kemp K; Levina L; Wang X; Hoogland S; Debnath R; Brzozowski L; Sargent EH; Asbury JB
    ACS Nano; 2012 Jan; 6(1):89-99. PubMed ID: 22168594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge transport in strongly coupled quantum dot solids.
    Kagan CR; Murray CB
    Nat Nanotechnol; 2015 Dec; 10(12):1013-26. PubMed ID: 26551016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics.
    Choi J; Kim Y; Jo JW; Kim J; Sun B; Walters G; García de Arquer FP; Quintero-Bermudez R; Li Y; Tan CS; Quan LN; Kam APT; Hoogland S; Lu Z; Voznyy O; Sargent EH
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics.
    Song JH; Choi H; Pham HT; Jeong S
    Nat Commun; 2018 Oct; 9(1):4267. PubMed ID: 30323251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint mapping of mobility and trap density in colloidal quantum dot solids.
    Stadler P; Sutherland BR; Ren Y; Ning Z; Simchi A; Thon SM; Hoogland S; Sargent EH
    ACS Nano; 2013 Jul; 7(7):5757-62. PubMed ID: 23786265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.