BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25899207)

  • 1. The dynamic loss and gain of introns during the evolution of the Brassicaceae.
    Milia G; Camiolo S; Avesani L; Porceddu A
    Plant J; 2015 Jun; 82(6):915-924. PubMed ID: 25899207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome.
    Fawcett JA; Rouzé P; Van de Peer Y
    Mol Biol Evol; 2012 Feb; 29(2):849-59. PubMed ID: 21998273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of Substitution Rate Variation at Many Nuclear Loci in Two Species Trios in the Brassicaceae Partitioned with ANOVA.
    Braverman JM; Hamilton MB; Johnson BA
    J Mol Evol; 2016 Oct; 83(3-4):97-109. PubMed ID: 27592229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Brassicaceae evolution through ancestral genome reconstruction.
    Murat F; Louis A; Maumus F; Armero A; Cooke R; Quesneville H; Roest Crollius H; Salse J
    Genome Biol; 2015 Dec; 16():262. PubMed ID: 26653025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of genome size in Brassicaceae.
    Johnston JS; Pepper AE; Hall AE; Chen ZJ; Hodnett G; Drabek J; Lopez R; Price HJ
    Ann Bot; 2005 Jan; 95(1):229-35. PubMed ID: 15596470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntenic gene analysis between Brassica rapa and other Brassicaceae species.
    Cheng F; Wu J; Fang L; Wang X
    Front Plant Sci; 2012; 3():198. PubMed ID: 22969786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution.
    Rogozin IB; Wolf YI; Sorokin AV; Mirkin BG; Koonin EV
    Curr Biol; 2003 Sep; 13(17):1512-7. PubMed ID: 12956953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana.
    Donoghue MT; Keshavaiah C; Swamidatta SH; Spillane C
    BMC Evol Biol; 2011 Feb; 11():47. PubMed ID: 21332978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.
    Dai S; Hou J; Long Y; Wang J; Li C; Xiao Q; Jiang X; Zou X; Zou J; Meng J
    BMC Plant Biol; 2015 Jun; 15():149. PubMed ID: 26084405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jan; 24(1):171-81. PubMed ID: 17065597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA.
    Yang YW; Tai PY; Chen Y; Li WH
    Mol Phylogenet Evol; 2002 May; 23(2):268-75. PubMed ID: 12069556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution.
    Huang CH; Sun R; Hu Y; Zeng L; Zhang N; Cai L; Zhang Q; Koch MA; Al-Shehbaz I; Edger PP; Pires JC; Tan DY; Zhong Y; Ma H
    Mol Biol Evol; 2016 Feb; 33(2):394-412. PubMed ID: 26516094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization.
    Yu J; Hu F; Dossa K; Wang Z; Ke T
    BMC Genomics; 2017 Jun; 18(1):474. PubMed ID: 28645261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Analysis of Parent-of-Origin Allelic Expression in Endosperms of Brassicaceae Species, Brassica rapa.
    Yoshida T; Kawanabe T; Bo Y; Fujimoto R; Kawabe A
    Plant Cell Physiol; 2018 Dec; 59(12):2590-2601. PubMed ID: 30165552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa.
    Wu P; Shao ZQ; Wu XZ; Wang Q; Wang B; Chen JQ; Hang YY; Xue JY
    Gene; 2014 Apr; 540(1):54-61. PubMed ID: 24576745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae).
    Zhou D; Zhou J; Meng L; Wang Q; Xie H; Guan Y; Ma Z; Zhong Y; Chen F; Liu J
    Gene; 2009 Jul; 441(1-2):36-44. PubMed ID: 18640249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution.
    Yang YF; Zhu T; Niu DK
    Genome Biol Evol; 2013; 5(4):723-33. PubMed ID: 23516254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History.
    Hohmann N; Wolf EM; Lysak MA; Koch MA
    Plant Cell; 2015 Oct; 27(10):2770-84. PubMed ID: 26410304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae.
    Zou Z; Li M; Jia R; Zhao H; He P; Zhang Y; Guo A
    Gene; 2020 Jul; 748():144685. PubMed ID: 32334024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.