These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2589921)

  • 1. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini.
    Schnell S; Bak F; Pfennig N
    Arch Microbiol; 1989; 152(6):556-63. PubMed ID: 2589921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.
    Ahn YB; Chae JC; Zylstra GJ; Häggblom MM
    Appl Environ Microbiol; 2009 Jul; 75(13):4248-53. PubMed ID: 19411421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced aniline degradation by Desulfatiglans anilini in a synthetic microbial community with the phototrophic purple sulfur bacterium Thiocapsa roseopersicina.
    Xie X; Müller N
    Syst Appl Microbiol; 2019 Sep; 42(5):125998. PubMed ID: 31345671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.
    Widdel F; Pfennig N
    Arch Microbiol; 1981 Jul; 129(5):395-400. PubMed ID: 7283636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes involved in the anaerobic degradation of phenol by the sulfate-reducing bacterium Desulfatiglans anilini.
    Xie X; Müller N
    BMC Microbiol; 2018 Aug; 18(1):93. PubMed ID: 30157755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol.
    Kuever J; Kulmer J; Jannsen S; Fischer U; Blotevogel KH
    Arch Microbiol; 1993; 159(3):282-8. PubMed ID: 8481092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate.
    Gorny N; Schink B
    Appl Environ Microbiol; 1994 Sep; 60(9):3396-400. PubMed ID: 7944370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds.
    Gorny N; Wahl G; Brune A; Schink B
    Arch Microbiol; 1992; 158(1):48-53. PubMed ID: 1444713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius.
    Philipp B; Schink B
    J Bacteriol; 1998 Jul; 180(14):3644-9. PubMed ID: 9658009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of anaerobic biodegradation of resorcinol catechol and hydroquinone in upflow fixed film-fixed bed reactors.
    Latkar M; Swaminathan K; Chakrabarti T
    Bioresour Technol; 2003 May; 88(1):69-74. PubMed ID: 12573566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone.
    Reichenbecher W; Schink B
    Arch Microbiol; 1997 Oct; 168(4):338-44. PubMed ID: 9297472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desulfosporomusa polytropa gen. nov., sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake.
    Sass H; Overmann J; Rütters H; Babenzien HD; Cypionka H
    Arch Microbiol; 2004 Oct; 182(2-3):204-11. PubMed ID: 15340785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria.
    Tanimoto Y; Bak F
    Appl Environ Microbiol; 1994 Jul; 60(7):2450-5. PubMed ID: 8074524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous removal of dihydroxybenzenes and toxicity reduction by Penicillium chrysogenum var. halophenolicum under saline conditions.
    Ferreira-Guedes S; Leitão AL
    Ecotoxicol Environ Saf; 2018 Apr; 150():240-250. PubMed ID: 29288905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria.
    Oppenberg B; Schink B
    Antonie Van Leeuwenhoek; 1990 May; 57(4):205-13. PubMed ID: 2353806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of 4-chloroaniline by bacteria enriched from soil.
    Vangnai AS; Petchkroh W
    FEMS Microbiol Lett; 2007 Mar; 268(2):209-16. PubMed ID: 17328747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic degradation of sorbic acid by sulfate-reducing and fermenting bacteria: pentanone-2 and isopentanone-2 as byproducts.
    Schnell S; Wondrak C; Wahl G; Schink B
    Biodegradation; 1991; 2(1):33-41. PubMed ID: 1368475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization.
    Krug M; Ziegler H; Straube G
    J Basic Microbiol; 1985; 25(2):103-10. PubMed ID: 4009428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids.
    Takii S; Hanada S; Hase Y; Tamaki H; Uyeno Y; Sekiguchi Y; Matsuura K
    Int J Syst Evol Microbiol; 2008 Oct; 58(Pt 10):2433-8. PubMed ID: 18842870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius.
    Darley PI; Hellstern JA; Medina-Bellver JI; Marqués S; Schink B; Philipp B
    J Bacteriol; 2007 May; 189(10):3824-33. PubMed ID: 17369298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.