These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1251 related articles for article (PubMed ID: 25899408)
21. Covalent bridging of surface functionalized Fe3O4 and YPO4:Eu nanostructures for simultaneous imaging and therapy. Barick KC; Sharma A; Shetake NG; Ningthoujam RS; Vatsa RK; Babu PD; Pandey BN; Hassan PA Dalton Trans; 2015 Sep; 44(33):14686-96. PubMed ID: 26215789 [TBL] [Abstract][Full Text] [Related]
22. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Lévy M; Lagarde F; Maraloiu VA; Blanchin MG; Gendron F; Wilhelm C; Gazeau F Nanotechnology; 2010 Oct; 21(39):395103. PubMed ID: 20820094 [TBL] [Abstract][Full Text] [Related]
23. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762 [TBL] [Abstract][Full Text] [Related]
24. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Soleymani M; Khalighfard S; Khodayari S; Khodayari H; Kalhori MR; Hadjighassem MR; Shaterabadi Z; Alizadeh AM Sci Rep; 2020 Feb; 10(1):1695. PubMed ID: 32015364 [TBL] [Abstract][Full Text] [Related]
25. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. Bhana S; Lin G; Wang L; Starring H; Mishra SR; Liu G; Huang X ACS Appl Mater Interfaces; 2015 Jun; 7(21):11637-47. PubMed ID: 25965727 [TBL] [Abstract][Full Text] [Related]
26. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study. Feng W; Zhou X; Nie W; Chen L; Qiu K; Zhang Y; He C ACS Appl Mater Interfaces; 2015 Feb; 7(7):4354-67. PubMed ID: 25664659 [TBL] [Abstract][Full Text] [Related]
27. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Tao C; Zhu Y Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592 [TBL] [Abstract][Full Text] [Related]
28. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. Dadfar SM; Camozzi D; Darguzyte M; Roemhild K; Varvarà P; Metselaar J; Banala S; Straub M; Güvener N; Engelmann U; Slabu I; Buhl M; van Leusen J; Kögerler P; Hermanns-Sachweh B; Schulz V; Kiessling F; Lammers T J Nanobiotechnology; 2020 Jan; 18(1):22. PubMed ID: 31992302 [TBL] [Abstract][Full Text] [Related]
29. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. Wang H; Mu Q; Revia R; Wang K; Tian B; Lin G; Lee W; Hong YK; Zhang M J Control Release; 2018 Nov; 289():70-78. PubMed ID: 30266634 [TBL] [Abstract][Full Text] [Related]
33. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814 [TBL] [Abstract][Full Text] [Related]
34. Cancer hyperthermia using magnetic nanoparticles. Kobayashi T Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094 [TBL] [Abstract][Full Text] [Related]
35. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Espinosa A; Bugnet M; Radtke G; Neveu S; Botton GA; Wilhelm C; Abou-Hassan A Nanoscale; 2015 Dec; 7(45):18872-7. PubMed ID: 26468627 [TBL] [Abstract][Full Text] [Related]
36. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. de Toledo LAS; Rosseto HC; Bruschi ML Pharm Dev Technol; 2018 Apr; 23(4):316-323. PubMed ID: 28565928 [TBL] [Abstract][Full Text] [Related]
37. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Amiri M; Salavati-Niasari M; Akbari A Adv Colloid Interface Sci; 2019 Mar; 265():29-44. PubMed ID: 30711796 [TBL] [Abstract][Full Text] [Related]
38. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Fu G; Liu W; Li Y; Jin Y; Jiang L; Liang X; Feng S; Dai Z Bioconjug Chem; 2014 Sep; 25(9):1655-63. PubMed ID: 25109612 [TBL] [Abstract][Full Text] [Related]
39. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. Van de Walle A; Figuerola A; Espinosa A; Abou-Hassan A; Estrader M; Wilhelm C Mater Horiz; 2023 Oct; 10(11):4757-4775. PubMed ID: 37740347 [TBL] [Abstract][Full Text] [Related]
40. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]