These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25899578)

  • 1. Transverse migration of polyelectrolytes in microfluidic channels induced by combined shear and electric fields.
    Arca M; Butler JE; Ladd AJ
    Soft Matter; 2015 Jun; 11(22):4375-82. PubMed ID: 25899578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transverse migration of a confined polymer driven by an external force.
    Usta OB; Butler JE; Ladd AJ
    Phys Rev Lett; 2007 Mar; 98(9):098301. PubMed ID: 17359205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of hydrodynamic interactions in the migration of polyelectrolytes driven by a pressure gradient and an electric field.
    Kekre R; Butler JE; Ladd AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):050803. PubMed ID: 21230428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected].
    Jendrejack RM; Schwartz DC; de Pablo JJ; Graham MD
    J Chem Phys; 2004 Feb; 120(5):2513-29. PubMed ID: 15268395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effect of spin speed and ionic strength on polyelectrolyte spin assembly.
    Patel PA; Dobrynin AV; Mather PT
    Langmuir; 2007 Dec; 23(25):12589-97. PubMed ID: 17988161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborative effects of electric field and fluid shear stress on fibroblast migration.
    Song S; Han H; Ko UH; Kim J; Shin JH
    Lab Chip; 2013 Apr; 13(8):1602-11. PubMed ID: 23450300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-stream migration in dilute solutions of rigid polymers undergoing rectilinear flow near a wall.
    Park J; Bricker JM; Butler JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040801. PubMed ID: 17994926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvillar ion channels: cytoskeletal modulation of ion fluxes.
    Lange K
    J Theor Biol; 2000 Oct; 206(4):561-84. PubMed ID: 11013115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of wall depletion and hydrodynamic interactions on stress-gradient-induced polymer migration.
    Rezvantalab H; Zhu G; Larson RG
    Soft Matter; 2016 Jul; 12(27):5883-97. PubMed ID: 27301610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscale hydrodynamic simulation of short polyelectrolytes in electric fields.
    Frank S; Winkler RG
    J Chem Phys; 2009 Dec; 131(23):234905. PubMed ID: 20025346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear electro-osmosis of dilute non-adsorbing polymer solutions with low ionic strength.
    Uematsu Y
    Soft Matter; 2015 Oct; 11(37):7402-11. PubMed ID: 26274546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-Viscoelastic Migration under Simultaneously Applied Microfluidic Pressure-Driven Flow and Electric Field.
    Serhatlioglu M; Isiksacan Z; Özkan M; Tuncel D; Elbuken C
    Anal Chem; 2020 May; 92(10):6932-6940. PubMed ID: 32295343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross stream chain migration in nanofluidic channels: Effects of chain length, channel height, and chain concentration.
    Kohale SC; Khare R
    J Chem Phys; 2009 Mar; 130(10):104904. PubMed ID: 19292556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of nonlinear shear rheology of dilute salt-free polyelectrolyte solutions.
    Stoltz C; de Pablo JJ; Graham MD
    J Chem Phys; 2007 Mar; 126(12):124906. PubMed ID: 17411160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic motion of a nanorod along the axis of a nanopore under a salt gradient.
    Joo SW; Qian S
    J Colloid Interface Sci; 2011 Apr; 356(1):331-40. PubMed ID: 21277582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding polyelectrolytes in trivalent salt solutions using dc electric fields: A study by Langevin dynamics simulations.
    Wei YF; Hsiao PY
    Biomicrofluidics; 2009 May; 3(2):22410. PubMed ID: 19693345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-Driven Cell Migration under External Electric Fields.
    Li Y; Mori Y; Sun SX
    Phys Rev Lett; 2015 Dec; 115(26):268101. PubMed ID: 26765031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
    Cho CC; Chen CL; Chen CK
    Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.