BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25899726)

  • 1. Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation.
    He X; Chen K; Li Y; Wang Z; Zhang H; Qian J; Ouyang P
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1615-22. PubMed ID: 25899726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing L-Lysine Production of Beet Molasses by Engineered Escherichia coli Using an In Situ Pretreatment Method.
    He X; Qi Y; Chen K; Li Y; Ouyang P
    Appl Biochem Biotechnol; 2016 Jul; 179(6):986-96. PubMed ID: 26961187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis.
    Erian AM; Gibisch M; Pflügl S
    Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pretreated beet molasses on benzaldehyde lyase production by recombinant Escherichia coli BL21(DE3)pLySs.
    Calik P; Levent H
    J Appl Microbiol; 2009 Nov; 107(5):1536-41. PubMed ID: 19426259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pulse feeding of beet molasses on recombinant benzaldehyde lyase production by Escherichia coli BL21(DE3).
    Calik P; Levent H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):65-73. PubMed ID: 19547969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture.
    Lazaridou A; Biliaderis CG; Roukas T; Izydorczyk M
    Appl Biochem Biotechnol; 2002 Jan; 97(1):1-22. PubMed ID: 11900113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.
    Xia J; Xu J; Hu L; Liu X
    Prep Biochem Biotechnol; 2016 Nov; 46(8):798-802. PubMed ID: 26829650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858.
    Atiyeh H; Duvnjak Z
    Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.
    Xia J; Xu Z; Xu H; Liang J; Li S; Feng X
    Bioresour Technol; 2014 Jul; 164():241-7. PubMed ID: 24861999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.
    Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z
    Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level production of heterologous proteins using untreated cane molasses and corn steep liquor in Escherichia coli medium.
    Ye Q; Li X; Yan M; Cao H; Xu L; Zhang Y; Chen Y; Xiong J; Ouyang P; Ying H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):517-25. PubMed ID: 20309539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by "Vitreoscilla hemoglobin expressing" Escherichia coli.
    Akbas MY; Sar T; Ozcelik B
    Biosci Biotechnol Biochem; 2014; 78(4):687-94. PubMed ID: 25036968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molasses as fermentation substrate for levan production by Halomonas sp.
    Küçükaşik F; Kazak H; Güney D; Finore I; Poli A; Yenigün O; Nicolaus B; Oner ET
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1729-40. PubMed ID: 21161209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilization of beet molasses as a novel carbon source for cephalosporin C production by Acremonium chrysogenum: Optimization of process parameters through statistical experimental designs.
    Lotfy WA
    Bioresour Technol; 2007 Dec; 98(18):3491-8. PubMed ID: 17222554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economical succinic acid production from cane molasses by Actinobacillus succinogenes.
    Liu YP; Zheng P; Sun ZH; Ni Y; Dong JJ; Zhu LL
    Bioresour Technol; 2008 Apr; 99(6):1736-42. PubMed ID: 17532626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients.
    Wang Y; Li K; Huang F; Wang J; Zhao J; Zhao X; Garza E; Manow R; Grayburn S; Zhou S
    Bioresour Technol; 2013 Nov; 148():394-400. PubMed ID: 24063823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693.
    Saha BC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):676-80. PubMed ID: 16534610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii.
    Calabia BP; Tokiwa Y
    Biotechnol Lett; 2007 Sep; 29(9):1329-32. PubMed ID: 17541505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic characterization of lysine production process in Brevibacterium lactofermentum.
    Ahmed S; Afzal M; Rajoka MI
    Appl Biochem Biotechnol; 2013 May; 170(1):81-90. PubMed ID: 23475286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,3-Propanediol production in a two-step process fermentation from renewable feedstock.
    Mendes FS; González-Pajuelo M; Cordier H; François JM; Vasconcelos I
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):519-27. PubMed ID: 21656140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.