These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25899742)

  • 21. Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes.
    Sun G; Zheng L; An J; Pan Y; Zhou J; Zhan Z; Pang JH; Chua CK; Leong KF; Li L
    Nanoscale; 2013 Apr; 5(7):2870-4. PubMed ID: 23446516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers.
    Barnett CJ; McGettrick JD; Gangoli VS; Kazimierska E; Orbaek White A; Barron AR
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33919441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State of the art of carbon nanotube fibers: opportunities and challenges.
    Lu W; Zu M; Byun JH; Kim BS; Chou TW
    Adv Mater; 2012 Apr; 24(14):1805-33. PubMed ID: 22438092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and Dissolution of Carbon Nanotube Fibers Spun from the Floating Catalyst Method.
    Tran TQ; Headrick RJ; Bengio EA; Myo Myint S; Khoshnevis H; Jamali V; Duong HM; Pasquali M
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37112-37119. PubMed ID: 28959881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorinated Carbon Nanotube/Nanofibrillated Cellulose Composite Film with Enhanced Toughness, Superior Thermal Conductivity, and Electrical Insulation.
    Wang X; Wu P
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34311-34321. PubMed ID: 30207455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement.
    Zu M; Lu W; Li QW; Zhu Y; Wang G; Chou TW
    ACS Nano; 2012 May; 6(5):4288-97. PubMed ID: 22494330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-Treatments for Multifunctional Property Enhancement of Carbon Nanotube Fibers from the Floating Catalyst Method.
    Tran TQ; Fan Z; Mikhalchan A; Liu P; Duong HM
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7948-56. PubMed ID: 26966936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mussel inspired protein-mediated surface modification to electrospun fibers and their potential biomedical applications.
    Xie J; Michael PL; Zhong S; Ma B; MacEwan MR; Lim CT
    J Biomed Mater Res A; 2012 Apr; 100(4):929-38. PubMed ID: 22275174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth.
    Huang YC; Hsu SH; Kuo WC; Chang-Chien CL; Cheng H; Huang YY
    J Biomed Mater Res A; 2011 Oct; 99(1):86-93. PubMed ID: 21800418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites.
    Song BJ; Ahn JW; Cho KK; Roh JS; Lee DY; Yang YS; Lee JB; Hwang DY; Kim HS
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7723-7. PubMed ID: 24245322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical method for improving both the electrical conductivity and mechanical properties of carbon nanotube yarn via intramolecular cross-dehydrogenative coupling.
    Choi YM; Choo H; Yeo H; You NH; Lee DS; Ku BC; Kim HC; Bong PH; Jeong Y; Goh M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7726-30. PubMed ID: 23947825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning.
    Alemán B; Reguero V; Mas B; Vilatela JJ
    ACS Nano; 2015 Jul; 9(7):7392-8. PubMed ID: 26082976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Surface Energetics of CNT-Grafted Carbon Fibers for Superior Electrical and Mechanical Properties in CFRPs.
    Badakhsh A; An KH; Kim BJ
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32604903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-dependent resistance of carbon nanotube fibers.
    Song Y; Di J; Jia Y; Yong Z; Xu J
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35235915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes.
    Higgins TM; Warren H; Panhuis MI
    Nanomaterials (Basel); 2011 Apr; 1(1):3-19. PubMed ID: 28348277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity.
    Zou J; Liu D; Zhao J; Hou L; Liu T; Zhang X; Zhao Y; Zhu YT; Li Q
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8197-8204. PubMed ID: 29429334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A viable method to enhance the electrical conductivity of CNT bundles: direct in situ TEM evaluation.
    Gong X; Zhang H; Sun Z; Zhang X; Xu J; Chu F; Sun L; Ramakrishna S
    Nanoscale; 2020 Jun; 12(24):13095-13102. PubMed ID: 32543632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon Nanotube Reinforced Strong Carbon Matrix Composites.
    Zhang S; Ma Y; Suresh L; Hao A; Bick M; Tan SC; Chen J
    ACS Nano; 2020 Aug; 14(8):9282-9319. PubMed ID: 32790347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.