These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25899755)
1. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Hädicke O; Bettenbrock K; Klamt S Biotechnol Bioeng; 2015 Oct; 112(10):2195-9. PubMed ID: 25899755 [TBL] [Abstract][Full Text] [Related]
2. Manipulation of the ATP pool as a tool for metabolic engineering. Hädicke O; Klamt S Biochem Soc Trans; 2015 Dec; 43(6):1140-5. PubMed ID: 26614651 [TBL] [Abstract][Full Text] [Related]
3. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli. Boecker S; Zahoor A; Schramm T; Link H; Klamt S Biotechnol J; 2019 Sep; 14(9):e1800438. PubMed ID: 30927494 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production. Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201 [TBL] [Abstract][Full Text] [Related]
5. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397 [TBL] [Abstract][Full Text] [Related]
6. ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate. Utrilla J; Gosset G; Martinez A J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1057-62. PubMed ID: 19471981 [TBL] [Abstract][Full Text] [Related]
7. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions. Zhao C; Lin Z; Dong H; Zhang Y; Li Y Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363967 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of succinate yield by manipulating NADH/NAD Li J; Li Y; Cui Z; Liang Q; Qi Q Appl Microbiol Biotechnol; 2017 Apr; 101(8):3153-3161. PubMed ID: 28108762 [TBL] [Abstract][Full Text] [Related]
10. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient D-lactate formation. Tian K; Niu D; Liu X; Prior BA; Zhou L; Lu F; Singh S; Wang Z Biotechnol Bioeng; 2016 Jan; 113(1):182-8. PubMed ID: 26152364 [TBL] [Abstract][Full Text] [Related]
11. Improvement of D-lactate productivity in recombinant Escherichia coli by coupling production with growth. Zhou L; Tian KM; Niu DD; Shen W; Shi GY; Singh S; Wang ZX Biotechnol Lett; 2012 Jun; 34(6):1123-30. PubMed ID: 22367280 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Zhou L; Zuo ZR; Chen XZ; Niu DD; Tian KM; Prior BA; Shen W; Shi GY; Singh S; Wang ZX Curr Microbiol; 2011 Mar; 62(3):981-9. PubMed ID: 21086129 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Mazumdar S; Clomburg JM; Gonzalez R Appl Environ Microbiol; 2010 Jul; 76(13):4327-36. PubMed ID: 20472739 [TBL] [Abstract][Full Text] [Related]
14. When Do Two-Stage Processes Outperform One-Stage Processes? Klamt S; Mahadevan R; Hädicke O Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29131522 [TBL] [Abstract][Full Text] [Related]
15. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696 [TBL] [Abstract][Full Text] [Related]
16. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli. de Arroyo Garcia L; Jones PR PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925 [TBL] [Abstract][Full Text] [Related]
17. [High-efficiency L-lactate production from glycerol by metabolically engineered Escherichia coli]. Tian K; Shi G; Lu F; Singh S; Wang Z Sheng Wu Gong Cheng Xue Bao; 2013 Sep; 29(9):1268-77. PubMed ID: 24409690 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Escherichia coli for L-malate production anaerobically. Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486 [TBL] [Abstract][Full Text] [Related]
19. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432 [TBL] [Abstract][Full Text] [Related]
20. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. Yang YT; San KY; Bennett GN Metab Eng; 1999 Apr; 1(2):141-52. PubMed ID: 10935927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]