These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25899755)
21. Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21. Kim TS; Jung HM; Kim SY; Zhang L; Li J; Sigdel S; Park JH; Haw JR; Lee JK J Microbiol Biotechnol; 2015 Jul; 25(7):1093-100. PubMed ID: 25791848 [TBL] [Abstract][Full Text] [Related]
22. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Wang Y; Tian T; Zhao J; Wang J; Yan T; Xu L; Liu Z; Garza E; Iverson A; Manow R; Finan C; Zhou S Biotechnol Lett; 2012 Nov; 34(11):2069-75. PubMed ID: 22791225 [TBL] [Abstract][Full Text] [Related]
23. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. Luo Z; Zeng W; Du G; Chen J; Zhou J ACS Synth Biol; 2019 Apr; 8(4):787-795. PubMed ID: 30856339 [TBL] [Abstract][Full Text] [Related]
24. Production of lactate in Escherichia coli by redox regulation genetically and physiologically. Liu H; Kang J; Qi Q; Chen G Appl Biochem Biotechnol; 2011 May; 164(2):162-9. PubMed ID: 21069474 [TBL] [Abstract][Full Text] [Related]
25. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861 [TBL] [Abstract][Full Text] [Related]
26. OptMSP: A toolbox for designing optimal multi-stage (bio)processes. Bauer J; Klamt S J Biotechnol; 2024 Mar; 383():94-102. PubMed ID: 38325658 [TBL] [Abstract][Full Text] [Related]
27. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli]. Zhao J; Xu L; Wang Y; Zhao X; Wang J Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707 [TBL] [Abstract][Full Text] [Related]
28. An Optimized Bistable Metabolic Switch To Decouple Phenotypic States during Anaerobic Fermentation. Venayak N; Raj K; Jaydeep R; Mahadevan R ACS Synth Biol; 2018 Dec; 7(12):2854-2866. PubMed ID: 30376634 [TBL] [Abstract][Full Text] [Related]
29. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions. Skorokhodova AY; Gulevich AY; Debabov VG J Biotechnol; 2019 Mar; 293():47-55. PubMed ID: 30695701 [TBL] [Abstract][Full Text] [Related]
30. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Nduko JM; Matsumoto K; Ooi T; Taguchi S Appl Microbiol Biotechnol; 2014 Mar; 98(6):2453-60. PubMed ID: 24337250 [TBL] [Abstract][Full Text] [Related]
31. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions. Kang A; Tan MH; Ling H; Chang MW Mol Biosyst; 2013 Feb; 9(2):285-95. PubMed ID: 23224080 [TBL] [Abstract][Full Text] [Related]
32. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211 [TBL] [Abstract][Full Text] [Related]
33. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Yamamoto S; Suda M; Niimi S; Inui M; Yukawa H Biotechnol Bioeng; 2013 Nov; 110(11):2938-48. PubMed ID: 23737329 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of Escherichia coli for the production of fumaric acid. Song CW; Kim DI; Choi S; Jang JW; Lee SY Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277 [TBL] [Abstract][Full Text] [Related]
35. Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Liang L; Liu R; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P Bioresour Technol; 2013 Sep; 143():405-12. PubMed ID: 23819977 [TBL] [Abstract][Full Text] [Related]
36. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. McAnulty MJ; Poosarla VG; Li J; Soo VW; Zhu F; Wood TK Biotechnol Bioeng; 2017 Apr; 114(4):852-861. PubMed ID: 27800599 [TBL] [Abstract][Full Text] [Related]
37. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation. Wu H; Bennett GN; San KY Biotechnol Bioeng; 2015 Aug; 112(8):1720-6. PubMed ID: 25788153 [TBL] [Abstract][Full Text] [Related]
38. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111]. Liang L; Ma J; Liu R; Wang G; Xu B; Zhang M; Jiang M Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1005-12. PubMed ID: 22016984 [TBL] [Abstract][Full Text] [Related]
39. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Ko Y; Ashok S; Ainala SK; Sankaranarayanan M; Chun AY; Jung GY; Park S Biotechnol J; 2014 Dec; 9(12):1526-35. PubMed ID: 25146562 [TBL] [Abstract][Full Text] [Related]
40. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity. Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]