BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25900329)

  • 1. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture.
    Hribar KC; Finlay D; Ma X; Qu X; Ondeck MG; Chung PH; Zanella F; Engler AJ; Sheikh F; Vuori K; Chen SC
    Lab Chip; 2015 Jun; 15(11):2412-8. PubMed ID: 25900329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.
    Ouyang L; Yao R; Mao S; Chen X; Na J; Sun W
    Biofabrication; 2015 Nov; 7(4):044101. PubMed ID: 26531008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells.
    Giobbe GG; Zagallo M; Riello M; Serena E; Masi G; Barzon L; Di Camillo B; Elvassore N
    Biotechnol Bioeng; 2012 Dec; 109(12):3119-32. PubMed ID: 22674472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells.
    Loessner D; Stok KS; Lutolf MP; Hutmacher DW; Clements JA; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8494-506. PubMed ID: 20709389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel formation by short D-peptide for cell-culture scaffolds.
    Restu WK; Yamamoto S; Nishida Y; Ienaga H; Aoi T; Maruyama T
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110746. PubMed ID: 32279773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes.
    Luo Y; Lou C; Zhang S; Zhu Z; Xing Q; Wang P; Liu T; Liu H; Li C; Shi W; Du Z; Gao Y
    Cytotherapy; 2018 Jan; 20(1):95-107. PubMed ID: 28969895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids.
    Kim SJ; Park J; Byun H; Park YW; Major LG; Lee DY; Choi YS; Shin H
    Biomaterials; 2019 Jan; 188():198-212. PubMed ID: 30368228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic stem cells growing in 3-dimensions shift from reliance on the substrate to each other for mechanical support.
    Teo A; Lim M; Weihs D
    J Biomech; 2015 Jul; 48(10):1777-81. PubMed ID: 26050958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids.
    Liu T; Chien CC; Parkinson L; Thierry B
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic behavior and spontaneous differentiation of mouse embryoid bodies on hydrogel substrates of different surface charge and chemical structures.
    Liu JF; Chen YM; Yang JJ; Kurokawa T; Kakugo A; Yamamoto K; Gong JP
    Tissue Eng Part A; 2011 Sep; 17(17-18):2343-57. PubMed ID: 21548714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meniscus induced self organization of multiple deep concave wells in a microchannel for embryoid bodies generation.
    Jeong GS; Jun Y; Song JH; Shin SH; Lee SH
    Lab Chip; 2012 Jan; 12(1):159-66. PubMed ID: 22076418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system.
    Han C; Takayama S; Park J
    Sci Rep; 2015 Jul; 5():11891. PubMed ID: 26144552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids.
    Anada T; Fukuda J; Sai Y; Suzuki O
    Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term culture of mouse embryonic stem cell-derived adherent neurospheres and functional neurons.
    Hayashi MA; Guerreiro JR; Cassola AC; Lizier NF; Kerkis A; Camargo AC; Kerkis I
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1493-502. PubMed ID: 20486784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep conical agarose microwell array for adhesion independent three-dimensional cell culture and dynamic volume measurement.
    Thomsen AR; Aldrian C; Bronsert P; Thomann Y; Nanko N; Melin N; Rücker G; Follo M; Grosu AL; Niedermann G; Layer PG; Heselich A; Lund PG
    Lab Chip; 2017 Dec; 18(1):179-189. PubMed ID: 29211089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.