BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25900356)

  • 1. In vitro study of biocompatibility of a graphene composite with gold nanoparticles and hydroxyapatite on human osteoblasts.
    Crisan L; Crisan B; Soritau O; Baciut M; Biris AR; Baciut G; Lucaciu O
    J Appl Toxicol; 2015 Oct; 35(10):1200-10. PubMed ID: 25900356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway.
    Liang H; Xu X; Feng X; Ma L; Deng X; Wu S; Liu X; Yang C
    Int J Nanomedicine; 2019; 14():6151-6163. PubMed ID: 31447557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour.
    Ramires PA; Romito A; Cosentino F; Milella E
    Biomaterials; 2001 Jun; 22(12):1467-74. PubMed ID: 11374445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bactericidal activity and in vitro cytotoxicity assessment of hydroxyapatite containing gold nanoparticles.
    Nirmala R; Park HM; Kalpana D; Kang HS; Navamathavan R; Lee YS; Kim HY
    J Biomed Nanotechnol; 2011 Jun; 7(3):342-50. PubMed ID: 21830474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering.
    Wang P; Yu T; Lv Q; Li S; Ma X; Yang G; Xu D; Liu X; Wang G; Chen Z; Xing SC
    Colloids Surf B Biointerfaces; 2019 Jan; 173():512-520. PubMed ID: 30340179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic.
    Kalantari E; Naghib SM
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1087-1096. PubMed ID: 30812992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of laser radiation on human osteoblasts cultured on nanostructured composite substrates.
    Crisan L; Soritau O; Baciut M; Baciut G; Crisan BV
    Clujul Med; 2015; 88(2):224-32. PubMed ID: 26528075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite.
    Zhang Y; Tanner KE; Gurav N; Di Silvio L
    J Biomed Mater Res A; 2007 May; 81(2):409-17. PubMed ID: 17117474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA.
    Kong YM; Bae CJ; Lee SH; Kim HW; Kim HE
    Biomaterials; 2005 Feb; 26(5):509-17. PubMed ID: 15276359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions.
    Sun L; Zhang L; Hemraz UD; Fenniri H; Webster TJ
    Tissue Eng Part A; 2012 Sep; 18(17-18):1741-50. PubMed ID: 22530958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of magnetized hydroxyapatite on the growth behaviors of osteoblasts and the mechanism from molecular dynamics simulation.
    Yang W; Xi X; Fang J; Liu P; Cai K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3753-9. PubMed ID: 23910273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.
    Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and physico-chemical assessment of hydroxyapatite (HA) with different porosity.
    Hornez JC; Chai F; Monchau F; Blanchemain N; Descamps M; Hildebrand HF
    Biomol Eng; 2007 Nov; 24(5):505-9. PubMed ID: 17900978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L; Guinn AS; Wang S
    Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering.
    Zhang Y; Hao L; Savalani MM; Harris RA; Di Silvio L; Tanner KE
    J Biomed Mater Res A; 2009 Dec; 91(4):1018-27. PubMed ID: 19107791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on the extracorporeal cytocompatibility of a composite of HA, carbon fiber and polyetheretherket-one].
    Liu X; Deng C; Liu J; Li J; Sui G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1159-64. PubMed ID: 22295706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the viability and adhesion of osteoblast cells to bone cements mixed with hydroxyapatite at different concentrations to use in vertebral augmentation techniques.
    Pino-Mínguez J; Jorge-Mora A; Couceiro-Otero R; García-Santiago C
    Rev Esp Cir Ortop Traumatol; 2015; 59(2):122-8. PubMed ID: 25312256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.