These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25900444)
1. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Steinmetz NJ; Aisenbrey EA; Westbrook KK; Qi HJ; Bryant SJ Acta Biomater; 2015 Jul; 21():142-53. PubMed ID: 25900444 [TBL] [Abstract][Full Text] [Related]
2. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. Aziz AH; Eckstein K; Ferguson VL; Bryant SJ J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536 [TBL] [Abstract][Full Text] [Related]
3. The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Steinmetz NJ; Bryant SJ Acta Biomater; 2011 Nov; 7(11):3829-40. PubMed ID: 21742067 [TBL] [Abstract][Full Text] [Related]
4. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Nguyen LH; Kudva AK; Saxena NS; Roy K Biomaterials; 2011 Oct; 32(29):6946-52. PubMed ID: 21723599 [TBL] [Abstract][Full Text] [Related]
5. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Wilmoth RL; Ferguson VL; Bryant SJ Adv Healthc Mater; 2020 Nov; 9(22):e2001226. PubMed ID: 33073541 [TBL] [Abstract][Full Text] [Related]
7. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496 [TBL] [Abstract][Full Text] [Related]
8. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Kinneberg KR; Nelson A; Stender ME; Aziz AH; Mozdzen LC; Harley BA; Bryant SJ; Ferguson VL Ann Biomed Eng; 2015 Nov; 43(11):2618-29. PubMed ID: 26001970 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Qiao Z; Lian M; Han Y; Sun B; Zhang X; Jiang W; Li H; Hao Y; Dai K Biomaterials; 2021 Jan; 266():120385. PubMed ID: 33120203 [TBL] [Abstract][Full Text] [Related]
10. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Huang H; Zhang X; Hu X; Dai L; Zhu J; Man Z; Chen H; Zhou C; Ao Y Biomed Mater; 2014 Jun; 9(3):035008. PubMed ID: 24770944 [TBL] [Abstract][Full Text] [Related]
11. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Guo JL; Kim YS; Koons GL; Lam J; Navara AM; Barrios S; Xie VY; Watson E; Smith BT; Pearce HA; Orchard EA; van den Beucken JJJP; Jansen JA; Wong ME; Mikos AG Acta Biomater; 2021 Jul; 128():120-129. PubMed ID: 33930575 [TBL] [Abstract][Full Text] [Related]
12. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. Choi B; Kim S; Lin B; Wu BM; Lee M ACS Appl Mater Interfaces; 2014 Nov; 6(22):20110-21. PubMed ID: 25361212 [TBL] [Abstract][Full Text] [Related]
13. Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel. Aisenbrey EA; Bryant SJ J Mater Chem B; 2016 May; 4(20):3562-3574. PubMed ID: 27499854 [TBL] [Abstract][Full Text] [Related]
14. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Babur BK; Futrega K; Lott WB; Klein TJ; Cooper-White J; Doran MR Cell Tissue Res; 2015 Sep; 361(3):755-68. PubMed ID: 25924853 [TBL] [Abstract][Full Text] [Related]
15. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Aisenbrey EA; Bryant SJ Biomaterials; 2019 Jan; 190-191():51-62. PubMed ID: 30391802 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Chen X; Zhang F; He X; Xu Y; Yang Z; Chen L; Zhou S; Yang Y; Zhou Z; Sheng W; Zeng Y Injury; 2013 Apr; 44(4):540-9. PubMed ID: 23337703 [TBL] [Abstract][Full Text] [Related]
17. Spatially Regulated Multiphenotypic Differentiation of Stem Cells in 3D via Engineered Mechanical Gradient. Horner CB; Maldonado M; Tai Y; Rony RMIK; Nam J ACS Appl Mater Interfaces; 2019 Dec; 11(49):45479-45488. PubMed ID: 31714732 [TBL] [Abstract][Full Text] [Related]
18. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Ho ST; Cool SM; Hui JH; Hutmacher DW Biomaterials; 2010 Jan; 31(1):38-47. PubMed ID: 19800683 [TBL] [Abstract][Full Text] [Related]
19. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Jung H; Park JS; Yeom J; Selvapalam N; Park KM; Oh K; Yang JA; Park KH; Hahn SK; Kim K Biomacromolecules; 2014 Mar; 15(3):707-14. PubMed ID: 24605794 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: a potential injectable cellular product for nucleus pulposus regeneration. Kumar D; Gerges I; Tamplenizza M; Lenardi C; Forsyth NR; Liu Y Acta Biomater; 2014 Aug; 10(8):3463-74. PubMed ID: 24793656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]