These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 25900515)
21. Effective Sequential Combined Chemotherapy with Trifluridine/Tipiracil and Regorafenib in Human Colorectal Cancer Cells. Matsuoka K; Nakagawa F; Tanaka N; Okabe H; Matsuo K; Takechi T Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30257515 [TBL] [Abstract][Full Text] [Related]
22. Stable expression of a recombinant sodium-dependent, pyrimidine-selective nucleoside transporter (CNT1) in a transport-deficient mouse leukemia cell line. Crawford CR; Cass CE; Young JD; Belt JA Biochem Cell Biol; 1998; 76(5):843-51. PubMed ID: 10353719 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms of gemcitabine oral absorption as determined by in situ intestinal perfusions in mice. Thompson BR; Hu Y; Smith DE Biochem Pharmacol; 2019 Oct; 168():57-64. PubMed ID: 31207211 [TBL] [Abstract][Full Text] [Related]
24. A Phase 1, Open-Label, Randomized, Crossover Study Evaluating the Bioavailability of TAS-102 (Trifluridine/Tipiracil) Tablets Relative to an Oral Solution Containing Equivalent Amounts of Trifluridine and Tipiracil. Becerra CR; Yoshida K; Mizuguchi H; Patel M; Von Hoff D J Clin Pharmacol; 2017 Jun; 57(6):751-759. PubMed ID: 28070894 [TBL] [Abstract][Full Text] [Related]
25. Role of the transporter regulator protein (RS1) in the modulation of concentrative nucleoside transporters (CNTs) in epithelia. Errasti-Murugarren E; Fernández-Calotti P; Veyhl-Wichmann M; Diepold M; Pinilla-Macua I; Pérez-Torras S; Kipp H; Koepsell H; Pastor-Anglada M Mol Pharmacol; 2012 Jul; 82(1):59-67. PubMed ID: 22492015 [TBL] [Abstract][Full Text] [Related]
26. Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ. Markovic I; Segal M; Djuricic B; Redzic Z Exp Physiol; 2008 Mar; 93(3):325-33. PubMed ID: 18039975 [TBL] [Abstract][Full Text] [Related]
27. Potential role of polymorphisms in the transporter genes ENT1 and MATE1/OCT2 in predicting TAS-102 efficacy and toxicity in patients with refractory metastatic colorectal cancer. Suenaga M; Schirripa M; Cao S; Zhang W; Yang D; Dadduzio V; Salvatore L; Borelli B; Pietrantonio F; Ning Y; Okazaki S; Berger MD; Miyamoto Y; Gopez R; Barzi A; Yamaguchi T; Loupakis F; Lenz HJ Eur J Cancer; 2017 Nov; 86():197-206. PubMed ID: 28992563 [TBL] [Abstract][Full Text] [Related]
28. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism. Yamaura Y; Chapron BD; Wang Z; Himmelfarb J; Thummel KE Drug Metab Dispos; 2016 Mar; 44(3):329-35. PubMed ID: 26700954 [TBL] [Abstract][Full Text] [Related]
29. TAS-102, a novel antitumor agent: a review of the mechanism of action. Lenz HJ; Stintzing S; Loupakis F Cancer Treat Rev; 2015 Nov; 41(9):777-83. PubMed ID: 26428513 [TBL] [Abstract][Full Text] [Related]
31. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. Huang QQ; Yao SY; Ritzel MW; Paterson AR; Cass CE; Young JD J Biol Chem; 1994 Jul; 269(27):17757-60. PubMed ID: 8027026 [TBL] [Abstract][Full Text] [Related]
32. Characterization of monocarboxylate transporter 6: expression in human intestine and transport of the antidiabetic drug nateglinide. Kohyama N; Shiokawa H; Ohbayashi M; Kobayashi Y; Yamamoto T Drug Metab Dispos; 2013 Nov; 41(11):1883-7. PubMed ID: 23935065 [TBL] [Abstract][Full Text] [Related]
33. Nutritional regulation of nucleoside transporter expression in rat small intestine. Valdés R; Ortega MA; Casado FJ; Felipe A; Gil A; Sánchez-Pozo A; Pastor-Anglada M Gastroenterology; 2000 Dec; 119(6):1623-30. PubMed ID: 11113083 [TBL] [Abstract][Full Text] [Related]
34. Human small intestinal epithelial cells differentiated from adult intestinal stem cells as a novel system for predicting oral drug absorption in humans. Takenaka T; Harada N; Kuze J; Chiba M; Iwao T; Matsunaga T Drug Metab Dispos; 2014 Nov; 42(11):1947-54. PubMed ID: 25200868 [TBL] [Abstract][Full Text] [Related]
35. Application of a Human Intestinal Epithelial Cell Monolayer to the Prediction of Oral Drug Absorption in Humans as a Superior Alternative to the Caco-2 Cell Monolayer. Takenaka T; Harada N; Kuze J; Chiba M; Iwao T; Matsunaga T J Pharm Sci; 2016 Feb; 105(2):915-924. PubMed ID: 26869436 [TBL] [Abstract][Full Text] [Related]
36. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539 [TBL] [Abstract][Full Text] [Related]
37. Radiosensitisation and enhanced tumour growth delay of colorectal cancer cells by sustained treatment with trifluridine/tipiracil and X-rays. Rothkamm K; Christiansen S; Rieckmann T; Horn M; Frenzel T; Brinker A; Schumacher U; Stein A; Petersen C; Burdak-Rothkamm S Cancer Lett; 2020 Nov; 493():179-188. PubMed ID: 32891715 [TBL] [Abstract][Full Text] [Related]
38. Expression of the rabbit intestinal N2 Na+/nucleoside transporter in Xenopus laevis oocytes. Jarvis SM; Griffith DA Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):605-7. PubMed ID: 1898349 [TBL] [Abstract][Full Text] [Related]
39. Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells. Ward JL; Tse CM Biochim Biophys Acta; 1999 Jun; 1419(1):15-22. PubMed ID: 10366666 [TBL] [Abstract][Full Text] [Related]
40. TAS-102 for the treatment of metastatic colorectal cancer. Salvatore L; Rossini D; Moretto R; Cremolini C; Schirripa M; Antoniotti C; Marmorino F; Loupakis F; Falcone A; Masi G Expert Rev Anticancer Ther; 2015; 15(11):1283-92. PubMed ID: 26509228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]