These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 25900515)
41. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Arakawa H; Shirasaka Y; Haga M; Nakanishi T; Tamai I Biopharm Drug Dispos; 2012 Sep; 33(6):332-41. PubMed ID: 22899169 [TBL] [Abstract][Full Text] [Related]
42. Pre-exposure to Fluorouracil Increased Trifluridine Incorporation and Enhanced its Anti-tumor Effect for Colorectal Cancer. Baba T; Kokuryo T; Yamaguchi J; Yokoyama Y; Uehara K; Ebata T; Nagino M Anticancer Res; 2018 Mar; 38(3):1427-1434. PubMed ID: 29491068 [TBL] [Abstract][Full Text] [Related]
43. Panitumumab interaction with TAS-102 leads to combinational anticancer effects via blocking of EGFR-mediated tumor response to trifluridine. Baba Y; Tamura T; Satoh Y; Gotou M; Sawada H; Ebara S; Shibuya K; Soeda J; Nakamura K Mol Oncol; 2017 Aug; 11(8):1065-1077. PubMed ID: 28486761 [TBL] [Abstract][Full Text] [Related]
44. Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transporter (SERT). Martel F; Monteiro R; Lemos C J Pharmacol Exp Ther; 2003 Jul; 306(1):355-62. PubMed ID: 12682218 [TBL] [Abstract][Full Text] [Related]
45. Real-world Treatment Patterns Among Patients With Colorectal Cancer Treated With Trifluridine/Tipiracil and Regorafenib. Patel AK; Duh MS; Barghout V; Yenikomshian MA; Xiao Y; Wynant W; Tabesh M; Fuchs CS Clin Colorectal Cancer; 2018 Sep; 17(3):e531-e539. PubMed ID: 29803544 [TBL] [Abstract][Full Text] [Related]
46. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Tsukihara H; Nakagawa F; Sakamoto K; Ishida K; Tanaka N; Okabe H; Uchida J; Matsuo K; Takechi T Oncol Rep; 2015 May; 33(5):2135-42. PubMed ID: 25812794 [TBL] [Abstract][Full Text] [Related]
47. Nucleoside transporters in the disposition and targeting of nucleoside analogs in the kidney. Mangravite LM; Badagnani I; Giacomini KM Eur J Pharmacol; 2003 Oct; 479(1-3):269-81. PubMed ID: 14612157 [TBL] [Abstract][Full Text] [Related]
48. Functional characterization of a H+/nucleoside co-transporter (CaCNT) from Candida albicans, a fungal member of the concentrative nucleoside transporter (CNT) family of membrane proteins. Loewen SK; Ng AM; Mohabir NN; Baldwin SA; Cass CE; Young JD Yeast; 2003 Jun; 20(8):661-75. PubMed ID: 12794928 [TBL] [Abstract][Full Text] [Related]
49. Contribution of CNT1 and ENT1 to ribavirin uptake in human hepatocytes. Choi MK; Kim MH; Maeng HJ; Song IS Arch Pharm Res; 2015; 38(5):904-13. PubMed ID: 25011570 [TBL] [Abstract][Full Text] [Related]
50. Human intestinal es nucleoside transporter: molecular characterization and nucleoside inhibitory profiles. Lum PY; Ngo LY; Bakken AH; Unadkat JD Cancer Chemother Pharmacol; 2000; 45(4):273-8. PubMed ID: 10755314 [TBL] [Abstract][Full Text] [Related]
51. Application of Intestinal Epithelial Cells Differentiated from Human Induced Pluripotent Stem Cells for Studies of Prodrug Hydrolysis and Drug Absorption in the Small Intestine. Akazawa T; Yoshida S; Ohnishi S; Kanazu T; Kawai M; Takahashi K Drug Metab Dispos; 2018 Nov; 46(11):1497-1506. PubMed ID: 30135242 [TBL] [Abstract][Full Text] [Related]
52. Vectorial transport of nucleoside analogs from the apical to the basolateral membrane in double-transfected cells expressing the human concentrative nucleoside transporter hCNT3 and the export pump ABCC4. Rius M; Keller D; Brom M; Hummel-Eisenbeiss J; Lyko F; Keppler D Drug Metab Dispos; 2010 Jul; 38(7):1054-63. PubMed ID: 20360301 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of a Novel Combination Therapy, Based on Trifluridine/Tipiracil and Fruquintinib, against Colorectal Cancer. Nukatsuka M; Fujioka A; Nagase H; Tanaka G; Hayashi H Chemotherapy; 2023; 68(2):102-110. PubMed ID: 36623495 [TBL] [Abstract][Full Text] [Related]
54. Potentiation of the antitumor activity of alpha, alpha, alpha-trifluorothymidine by the co-administration of an inhibitor of thymidine phosphorylase at a suitable molar ratio in vivo. Emura T; Suzuki N; Fujioka A; Ohshimo H; Fukushima M Int J Oncol; 2005 Aug; 27(2):449-55. PubMed ID: 16010427 [TBL] [Abstract][Full Text] [Related]
55. Improved intestinal transport of PD 158473, an N-methyl-D-aspartate (NMDA) antagonist, by involvement of multiple transporters. Oh DM; Han HK; Williamson RM; Bigge CF; Amidon GL; Stewart BH; Surendran N J Pharm Sci; 2002 Dec; 91(12):2579-87. PubMed ID: 12434401 [TBL] [Abstract][Full Text] [Related]
56. Safety of trifluridine/tipiracil in an open-label expanded-access program in elderly and younger patients with metastatic colorectal cancer. Mayer RJ; Hochster HS; Cohen SJ; Winkler R; Makris L; Grothey A Cancer Chemother Pharmacol; 2018 Dec; 82(6):961-969. PubMed ID: 30350179 [TBL] [Abstract][Full Text] [Related]
57. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport. Kato K; Shirasaka Y; Kuraoka E; Kikuchi A; Iguchi M; Suzuki H; Shibasaki S; Kurosawa T; Tamai I Mol Pharm; 2010 Oct; 7(5):1747-56. PubMed ID: 20735088 [TBL] [Abstract][Full Text] [Related]
58. Frog intestinal sac as an in vitro method for the assessment of intestinal permeability in humans: Application to carrier transported drugs. Franco M; Lopedota A; Trapani A; Cutrignelli A; Meleleo D; Micelli S; Trapani G Int J Pharm; 2008 Mar; 352(1-2):182-8. PubMed ID: 18055143 [TBL] [Abstract][Full Text] [Related]
59. Improved chemoradiation treatment using trifluridine in human colorectal cancer cells in vitro. Matsuoka K; Kobunai T; Nukatsuka M; Takechi T Biochem Biophys Res Commun; 2017 Dec; 494(1-2):249-255. PubMed ID: 29024630 [TBL] [Abstract][Full Text] [Related]
60. Phosphorylation of RS1 (RSC1A1) Steers Inhibition of Different Exocytotic Pathways for Glucose Transporter SGLT1 and Nucleoside Transporter CNT1, and an RS1-Derived Peptide Inhibits Glucose Absorption. Veyhl-Wichmann M; Friedrich A; Vernaleken A; Singh S; Kipp H; Gorboulev V; Keller T; Chintalapati C; Pipkorn R; Pastor-Anglada M; Groll J; Koepsell H Mol Pharmacol; 2016 Jan; 89(1):118-32. PubMed ID: 26464324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]