BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25900567)

  • 1. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
    Koteyeva NK; Voznesenskaya EV; Edwards GE
    Plant Sci; 2015 Jun; 235():70-80. PubMed ID: 25900567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant involvement of PEP-CK in carbon assimilation of C4 eudicots.
    Muhaidat R; McKown AD
    Ann Bot; 2013 Apr; 111(4):577-89. PubMed ID: 23388881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes.
    Carmo-Silva AE; Bernardes da Silva A; Keys AJ; Parry MA; Arrabaça MC
    Photosynth Res; 2008 Sep; 97(3):223-33. PubMed ID: 18629606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species.
    Bräutigam A; Schliesky S; Külahoglu C; Osborne CP; Weber AP
    J Exp Bot; 2014 Jul; 65(13):3579-93. PubMed ID: 24642845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry.
    Sommer M; Bräutigam A; Weber AP
    Plant Biol (Stuttg); 2012 Jul; 14(4):621-9. PubMed ID: 22289126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses.
    Sonawane BV; Sharwood RE; Whitney S; Ghannoum O
    J Exp Bot; 2018 May; 69(12):3053-3068. PubMed ID: 29659931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.
    Pinto H; Sharwood RE; Tissue DT; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3669-81. PubMed ID: 24723409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the NAD-ME biochemical pathway within C
    Watson-Lazowski A; Papanicolaou A; Sharwood R; Ghannoum O
    Photosynth Res; 2018 Nov; 138(2):233-248. PubMed ID: 30078073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of phosphoenolpyruvate carboxykinase-type C4 leaf anatomy: immuno-, cytochemical and ultrastructural analyses.
    Voznesenskaya EV; Franceschi VR; Chuong SD; Edwards GE
    Ann Bot; 2006 Jul; 98(1):77-91. PubMed ID: 16704997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis.
    Wang Y; Bräutigam A; Weber AP; Zhu XG
    J Exp Bot; 2014 Jul; 65(13):3567-78. PubMed ID: 24609651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity in forms of C4 in the genus Cleome (Cleomaceae).
    Koteyeva NK; Voznesenskaya EV; Roalson EH; Edwards GE
    Ann Bot; 2011 Feb; 107(2):269-83. PubMed ID: 21147832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of thylakoid protein complexes in the mesophyll and bundle sheath cells from C
    Hernández-Prieto MA; Foster C; Watson-Lazowski A; Ghannoum O; Chen M
    Physiol Plant; 2019 May; 166(1):134-147. PubMed ID: 30838662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent Recruitment of Duplicated β-Subunit-Coding NAD-ME Genes Aided the Evolution of C4 Photosynthesis in Cleomaceae.
    Tronconi MA; Hüdig M; Schranz ME; Maurino VG
    Front Plant Sci; 2020; 11():572080. PubMed ID: 33123181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The operation of PEPCK increases light harvesting plasticity in C
    Bellasio C; Lundgren MR
    Plant Cell Environ; 2024 Jun; 47(6):2288-2309. PubMed ID: 38494958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages.
    Rao X; Lu N; Li G; Nakashima J; Tang Y; Dixon RA
    J Exp Bot; 2016 Mar; 67(6):1649-62. PubMed ID: 26896851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy.
    Koteyeva NK; Voznesenskaya EV; Cousins AB; Edwards GE
    J Exp Bot; 2014 Jul; 65(13):3525-41. PubMed ID: 24550438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C3-C4 intermediates and NAD-ME C4 species with Pilosoid-type Kranz anatomy.
    Voznesenskaya EV; Koteyeva NK; Edwards GE; Ocampo G
    J Exp Bot; 2017 Jan; 68(2):225-239. PubMed ID: 27986845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp.: increased PEPCK activity under water-limiting conditions.
    Cacefo V; Ribas AF; Zilliani RR; Neris DM; Domingues DS; Moro AL; Vieira LGE
    BMC Plant Biol; 2019 Apr; 19(1):144. PubMed ID: 30991938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses.
    Liu MZ; Osborne CP
    J Exp Bot; 2013 May; 64(8):2183-91. PubMed ID: 23599273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.