BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25900567)

  • 21. Structural, biochemical, and physiological characterization of C4 photosynthesis in species having two vastly different types of kranz anatomy in genus Suaeda (Chenopodiaceae).
    Voznesenskaya EV; Chuong SD; Koteyeva NK; Franceschi VR; Freitag H; Edwards GE
    Plant Biol (Stuttg); 2007 Nov; 9(6):745-57. PubMed ID: 17891703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae).
    Voznesenskaya EV; Koteyeva NK; Chuong SDX; Ivanova AN; Barroca J; Craven LA; Edwards GE
    Funct Plant Biol; 2007 May; 34(4):247-267. PubMed ID: 32689352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase.
    Yoshimura Y; Kubota F; Ueno O
    Planta; 2004 Dec; 220(2):307-17. PubMed ID: 15290293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Respiratory and C4-photosynthetic NAD-malic enzyme coexist in bundle sheath cell mitochondria and evolved via association of differentially adapted subunits.
    Hüdig M; Tronconi MA; Zubimendi JP; Sage TL; Poschmann G; Bickel D; Gohlke H; Maurino VG
    Plant Cell; 2022 Jan; 34(1):597-615. PubMed ID: 34734993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coleataenia prionitis, a C
    Tashima M; Yabiku T; Ueno O
    Photosynth Res; 2021 Feb; 147(2):211-227. PubMed ID: 33393063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthetic responses of a C(3) and three C(4) species of the genus Panicum (s.l.) with different metabolic subtypes to drought stress.
    Alfonso SU; Brüggemann W
    Photosynth Res; 2012 Sep; 112(3):175-91. PubMed ID: 22797823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C4 plant Guinea grass.
    Walker RP; Chen ZH; Acheson RM; Leegood RC
    Plant Physiol; 2002 Jan; 128(1):165-72. PubMed ID: 11788762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploiting differences in the energy budget among C
    Yin X; Struik PC
    New Phytol; 2021 Mar; 229(5):2400-2409. PubMed ID: 33067814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses.
    Ghannoum O; Evans JR; Chow WS; Andrews TJ; Conroy JP; von Caemmerer S
    Plant Physiol; 2005 Feb; 137(2):638-50. PubMed ID: 15665246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C4 species.
    Alvarez CE; Saigo M; Margarit E; Andreo CS; Drincovich MF
    Photosynth Res; 2013 May; 115(1):65-80. PubMed ID: 23649167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The energy budget in C
    Yin X; Struik PC
    New Phytol; 2018 May; 218(3):986-998. PubMed ID: 29520959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry.
    Sharwood RE; Sonawane BV; Ghannoum O; Whitney SM
    J Exp Bot; 2016 May; 67(10):3137-48. PubMed ID: 27122573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at inter-glacial CO2.
    Pinto H; Powell JR; Sharwood RE; Tissue DT; Ghannoum O
    Plant Cell Environ; 2016 Mar; 39(3):514-26. PubMed ID: 26381794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C
    Pyankov VI; Gunin PD; Tsoog S; Black CC
    Oecologia; 2000 Apr; 123(1):15-31. PubMed ID: 28308740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of C4 photosynthesis: modulation of mitochondrial NAD-malic enzyme by adenylates.
    Furbank RT; Agostino A; Hatch MD
    Arch Biochem Biophys; 1991 Sep; 289(2):376-81. PubMed ID: 1898077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity.
    Chao Q; Liu XY; Mei YC; Gao ZF; Chen YB; Qian CR; Hao YB; Wang BC
    Plant Mol Biol; 2014 May; 85(1-2):95-105. PubMed ID: 24435212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway.
    Bellasio C; Griffiths H
    Plant Physiol; 2014 Jan; 164(1):466-80. PubMed ID: 24254314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of alanine and aspartate aminotransferases in C
    Schlüter U; Bräutigam A; Droz JM; Schwender J; Weber APM
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1():64-76. PubMed ID: 30126035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism.
    Brown NJ; Palmer BG; Stanley S; Hajaji H; Janacek SH; Astley HM; Parsley K; Kajala K; Quick WP; Trenkamp S; Fernie AR; Maurino VG; Hibberd JM
    Plant J; 2010 Jan; 61(1):122-33. PubMed ID: 19807880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of leaf width and conductances to CO
    Cano FJ; Sharwood RE; Cousins AB; Ghannoum O
    New Phytol; 2019 Aug; 223(3):1280-1295. PubMed ID: 31087798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.