These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25900658)

  • 1. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.
    Deutzmann JS; Sahin M; Spormann AM
    mBio; 2015 Apr; 6(2):. PubMed ID: 25900658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis.
    Lohner ST; Deutzmann JS; Logan BE; Leigh J; Spormann AM
    ISME J; 2014 Aug; 8(8):1673-81. PubMed ID: 24844759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediator-free enzymatic electrosynthesis of formate by the Methanococcus maripaludis heterodisulfide reductase supercomplex.
    Lienemann M; Deutzmann JS; Milton RD; Sahin M; Spormann AM
    Bioresour Technol; 2018 Apr; 254():278-283. PubMed ID: 29413934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor.
    Philips J; Van den Driessche N; De Paepe K; Prévoteau A; Gralnick JA; Arends JBA; Rabaey K
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30054363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron Corrosion via Direct Metal-Microbe Electron Transfer.
    Tang HY; Holmes DE; Ueki T; Palacios PA; Lovley DR
    mBio; 2019 May; 10(3):. PubMed ID: 31088920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced microbial electrosynthesis by using defined co-cultures.
    Deutzmann JS; Spormann AM
    ISME J; 2017 Mar; 11(3):704-714. PubMed ID: 27801903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.
    Lupa B; Hendrickson EL; Leigh JA; Whitman WB
    Appl Environ Microbiol; 2008 Nov; 74(21):6584-90. PubMed ID: 18791018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.
    Costa KC; Lie TJ; Xia Q; Leigh JA
    J Bacteriol; 2013 Nov; 195(22):5160-5. PubMed ID: 24039260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Oligosaccharyltransferase AglB Supports Surface-Associated Growth and Iron Oxidation in Methanococcus maripaludis.
    Holten MP; Fonseca DR; Costa KC
    Appl Environ Microbiol; 2021 Aug; 87(17):e0099521. PubMed ID: 34132588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
    Tremblay PL; Angenent LT; Zhang T
    Trends Biotechnol; 2017 Apr; 35(4):360-371. PubMed ID: 27816255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis.
    Tsurumaru H; Ito N; Mori K; Wakai S; Uchiyama T; Iino T; Hosoyama A; Ataku H; Nishijima K; Mise M; Shimizu A; Harada T; Horikawa H; Ichikawa N; Sekigawa T; Jinno K; Tanikawa S; Yamazaki J; Sasaki K; Yamazaki S; Fujita N; Harayama S
    Sci Rep; 2018 Oct; 8(1):15149. PubMed ID: 30310166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H
    Woodard TL; Ueki T; Lovley DR
    mBio; 2023 Apr; 14(2):e0007623. PubMed ID: 36786581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of genetic approaches for the methane-producing archaebacterium Methanococcus maripaludis.
    Whitman WB; Tumbula DL; Yu JP; Kim W
    Biofactors; 1997; 6(1):37-46. PubMed ID: 9233538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct cathodic electron uptake coupled to sulfate reduction by Desulfovibrio ferrophilus IS5 biofilms.
    McCully AL; Spormann AM
    Environ Microbiol; 2020 Nov; 22(11):4794-4807. PubMed ID: 32939950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis.
    Hendrickson EL; Leigh JA
    J Bacteriol; 2008 Jul; 190(14):4818-21. PubMed ID: 18487331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecies Formate Exchange Drives Syntrophic Growth of
    Day LA; Kelsey EL; Fonseca DR; Costa KC
    Appl Environ Microbiol; 2022 Dec; 88(23):e0115922. PubMed ID: 36374033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis.
    Costa KC; Yoon SH; Pan M; Burn JA; Baliga NS; Leigh JA
    J Bacteriol; 2013 Apr; 195(7):1456-62. PubMed ID: 23335420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide.
    Mayer F; Enzmann F; Lopez AM; Holtmann D
    Bioresour Technol; 2019 Oct; 289():121706. PubMed ID: 31279320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiquantitative Detection of Hydrogen-Associated or Hydrogen-Free Electron Transfer within Methanogenic Biofilm of Microbial Electrosynthesis.
    Cai W; Liu W; Wang B; Yao H; Guadie A; Wang A
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.