BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25900689)

  • 1. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.
    Best M; Degen A; Baalmann M; Schmidt TT; Wombacher R
    Chembiochem; 2015 May; 16(8):1158-62. PubMed ID: 25900689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific enzymatic introduction of a norbornene modified unnatural base into RNA and application in post-transcriptional labeling.
    Domnick C; Eggert F; Kath-Schorr S
    Chem Commun (Camb); 2015 May; 51(39):8253-6. PubMed ID: 25874847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells.
    Liu DS; Tangpeerachaikul A; Selvaraj R; Taylor MT; Fox JM; Ting AY
    J Am Chem Soc; 2012 Jan; 134(2):792-5. PubMed ID: 22176354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diels-Alder cycloadditions on synthetic RNA in mammalian cells.
    Pyka AM; Domnick C; Braun F; Kath-Schorr S
    Bioconjug Chem; 2014 Aug; 25(8):1438-43. PubMed ID: 25068829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Norbornenes in inverse electron-demand Diels-Alder reactions.
    Vrabel M; Kölle P; Brunner KM; Gattner MJ; López-Carrillo V; de Vivie-Riedle R; Carell T
    Chemistry; 2013 Sep; 19(40):13309-12. PubMed ID: 24027163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic and Site-Specific Ligation of Minimal-Size Tetrazines and Triazines to Proteins for Bioconjugation and Live-Cell Imaging.
    Baalmann M; Ziegler MJ; Werther P; Wilhelm J; Wombacher R
    Bioconjug Chem; 2019 May; 30(5):1405-1414. PubMed ID: 30883100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation.
    Karver MR; Weissleder R; Hilderbrand SA
    Bioconjug Chem; 2011 Nov; 22(11):2263-70. PubMed ID: 21950520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Potential of Norbornene-Modified Mannosamine Derivatives for Metabolic Glycoengineering.
    Späte AK; Dold JE; Batroff E; Schart VF; Wieland DE; Baudendistel OR; Wittmann V
    Chembiochem; 2016 Jul; 17(14):1374-83. PubMed ID: 27147502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Specific Protein Labeling with Tetrazine Amino Acids.
    Blizzard RJ; Gibson TE; Mehl RA
    Methods Mol Biol; 2018; 1728():201-217. PubMed ID: 29405000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNAP/CLIP-Tags and Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC)/Inverse Electron Demand Diels-Alder (IEDDA) for Intracellular Orthogonal/Bioorthogonal Labeling.
    Macias-Contreras M; He H; Little KN; Lee JP; Campbell RP; Royzen M; Zhu L
    Bioconjug Chem; 2020 May; 31(5):1370-1381. PubMed ID: 32223177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse electron-demand diels-alder reactions of tetrazine and norbornene at the air-water interface.
    Nakahara H; Hagimori M; Kannaka K; Mukai T; Shibata O
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112333. PubMed ID: 35038654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.
    Späte AK; Schart VF; Schöllkopf S; Niederwieser A; Wittmann V
    Chemistry; 2014 Dec; 20(50):16502-8. PubMed ID: 25298205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions.
    Kozma E; Demeter O; Kele P
    Chembiochem; 2017 Mar; 18(6):486-501. PubMed ID: 28070925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry.
    Schoch J; Staudt M; Samanta A; Wiessler M; Jäschke A
    Bioconjug Chem; 2012 Jul; 23(7):1382-6. PubMed ID: 22709568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Norbornylated Cellulose and Its "Click" Modification by an Inverse-Electron Demand Diels-Alder (iEDDA) Reaction.
    Wappl C; Schallert V; Slugovc C; Knall AC; Spirk S
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities.
    Kurra Y; Odoi KA; Lee YJ; Yang Y; Lu T; Wheeler SE; Torres-Kolbus J; Deiters A; Liu WR
    Bioconjug Chem; 2014 Sep; 25(9):1730-8. PubMed ID: 25158039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient DNA-Polymer Coupling in Organic Solvents: A Survey of Amide Coupling, Thiol-Ene and Tetrazine-Norbornene Chemistries Applied to Conjugation of Poly(N-Isopropylacrylamide).
    Wilks TR; O'Reilly RK
    Sci Rep; 2016 Dec; 6():39192. PubMed ID: 27982070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.