BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25900689)

  • 21. Triple Orthogonal Labeling of Glycans by Applying Photoclick Chemistry.
    Schart VF; Hassenrück J; Späte AK; Dold JEGA; Fahrner R; Wittmann V
    Chembiochem; 2019 Jan; 20(2):166-171. PubMed ID: 30499611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-step protein labeling utilizing lipoic acid ligase and Sonogashira cross-coupling.
    Hauke S; Best M; Schmidt TT; Baalmann M; Krause A; Wombacher R
    Bioconjug Chem; 2014 Sep; 25(9):1632-7. PubMed ID: 25152073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic studies of inverse electron demand Diels-Alder reactions (iEDDA) of norbornenes and 3,6-dipyridin-2-yl-1,2,4,5-tetrazine.
    Knall AC; Hollauf M; Slugovc C
    Tetrahedron Lett; 2014 Aug; 55(34):4763-4766. PubMed ID: 25152544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Minimal, Unstrained S-Allyl Handle for Pre-Targeting Diels-Alder Bioorthogonal Labeling in Live Cells.
    Oliveira BL; Guo Z; Boutureira O; Guerreiro A; Jiménez-Osés G; Bernardes GJ
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14683-14687. PubMed ID: 27763724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proximity-Induced Bioorthogonal Chemistry Using Inverse Electron Demand Diels-Alder Reaction.
    Möhler JS; Werther P; Wombacher R
    Methods Mol Biol; 2019; 2008():147-163. PubMed ID: 31124095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spirohexene-Tetrazine Ligation Enables Bioorthogonal Labeling of Class B G Protein-Coupled Receptors in Live Cells.
    Ramil CP; Dong M; An P; Lewandowski TM; Yu Z; Miller LJ; Lin Q
    J Am Chem Soc; 2017 Sep; 139(38):13376-13386. PubMed ID: 28876923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfonyl azide-mediated norbornene aziridination for orthogonal peptide and protein labeling.
    Gattner MJ; Ehrlich M; Vrabel M
    Chem Commun (Camb); 2014 Oct; 50(83):12568-71. PubMed ID: 25198620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dienophile-Modified Mannosamine Derivatives for Metabolic Labeling of Sialic Acids: A Comparative Study.
    Dold JEGA; Pfotzer J; Späte AK; Wittmann V
    Chembiochem; 2017 Jul; 18(13):1242-1250. PubMed ID: 28318083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable Pyrrole-Linked Bioconjugates through Tetrazine-Triggered Azanorbornadiene Fragmentation.
    Gil de Montes E; Istrate A; Navo CD; Jiménez-Moreno E; Hoyt EA; Corzana F; Robina I; Jiménez-Osés G; Moreno-Vargas AJ; Bernardes GJL
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6196-6200. PubMed ID: 31981460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate.
    García-Aznar P; Escorihuela J
    Org Biomol Chem; 2022 Aug; 20(32):6400-6412. PubMed ID: 35876298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry.
    Alge DL; Azagarsamy MA; Donohue DF; Anseth KS
    Biomacromolecules; 2013 Apr; 14(4):949-53. PubMed ID: 23448682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3,6-Substituted-1,2,4,5-tetrazines: tuning reaction rates for staged labeling applications.
    Wang D; Chen W; Zheng Y; Dai C; Wang K; Ke B; Wang B
    Org Biomol Chem; 2014 Jun; 12(23):3950-5. PubMed ID: 24806890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-step activity-based protein profiling of diacylglycerol lipase.
    van Rooden EJ; Kreekel R; Hansen T; Janssen APA; van Esbroeck ACM; den Dulk H; van den Berg RJBHN; Codée JDC; van der Stelt M
    Org Biomol Chem; 2018 Jul; 16(29):5250-5253. PubMed ID: 30004552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.
    Peng T; Hang HC
    J Am Chem Soc; 2016 Nov; 138(43):14423-14433. PubMed ID: 27768298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green- to far-red-emitting fluorogenic tetrazine probes - synthetic access and no-wash protein imaging inside living cells.
    Wieczorek A; Werther P; Euchner J; Wombacher R
    Chem Sci; 2017 Feb; 8(2):1506-1510. PubMed ID: 28572909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double Click: Unexpected 1:2 Stoichiometry in a Norbornene-Tetrazine Reaction.
    Devi G; Hedger AK; Whitby RJ; Watts JK
    J Org Chem; 2023 May; 88(9):5341-5347. PubMed ID: 37058436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry.
    Roling O; Mardyukov A; Lamping S; Vonhören B; Rinnen S; Arlinghaus HF; Studer A; Ravoo BJ
    Org Biomol Chem; 2014 Oct; 12(39):7828-35. PubMed ID: 25166737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverse electron-demand Diels-Alder reactions for the selective and efficient labeling of RNA.
    Schoch J; Ameta S; Jäschke A
    Chem Commun (Camb); 2011 Dec; 47(46):12536-7. PubMed ID: 22002170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent bioorthogonal labeling of class B GPCRs in live cells.
    Gangam SK; Lin Q
    Methods Enzymol; 2020; 641():95-111. PubMed ID: 32713539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction.
    Schoch J; Wiessler M; Jäschke A
    J Am Chem Soc; 2010 Jul; 132(26):8846-7. PubMed ID: 20550120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.