BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25900689)

  • 41. Rigid tetrazine fluorophore conjugates with fluorogenic properties in the inverse electron demand Diels-Alder reaction.
    Wieczorek A; Buckup T; Wombacher R
    Org Biomol Chem; 2014 Jun; 12(24):4177-85. PubMed ID: 24826902
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photo-induced and Rapid Labeling of Tetrazine-Bearing Proteins via Cyclopropenone-Caged Bicyclononynes.
    Mayer SV; Murnauer A; von Wrisberg MK; Jokisch ML; Lang K
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15876-15882. PubMed ID: 31476269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes.
    Szatmári Á; Cserép GB; Molnár TÁ; Söveges B; Biró A; Várady G; Szabó E; Németh K; Kele P
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443576
    [TBL] [Abstract][Full Text] [Related]  

  • 45. (125)I-Tetrazines and Inverse-Electron-Demand Diels-Alder Chemistry: A Convenient Radioiodination Strategy for Biomolecule Labeling, Screening, and Biodistribution Studies.
    Albu SA; Al-Karmi SA; Vito A; Dzandzi JP; Zlitni A; Beckford-Vera D; Blacker M; Janzen N; Patel RM; Capretta A; Valliant JF
    Bioconjug Chem; 2016 Jan; 27(1):207-16. PubMed ID: 26699913
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-Step Activity-Based Protein Profiling with the Proteasome System as Model of Study.
    Soriano GP; Overkleeft HS; Florea BI
    Methods Mol Biol; 2017; 1491():205-215. PubMed ID: 27778291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tetrazine-norbornene click reactions to functionalize degradable polymers derived from lactide.
    Barker IA; Hall DJ; Hansell CF; Du Prez FE; O'Reilly RK; Dove AP
    Macromol Rapid Commun; 2011 Sep; 32(17):1362-6. PubMed ID: 25867900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes.
    Fernández-Suárez M; Baruah H; Martínez-Hernández L; Xie KT; Baskin JM; Bertozzi CR; Ting AY
    Nat Biotechnol; 2007 Dec; 25(12):1483-7. PubMed ID: 18059260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorogenic Tetrazine-Siliconrhodamine Probe for the Labeling of Noncanonical Amino Acid Tagged Proteins.
    Kozma E; Paci G; Estrada Girona G; Lemke EA; Kele P
    Methods Mol Biol; 2018; 1728():337-363. PubMed ID: 29405009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proximity-enhanced protein crosslinking through an alkene-tetrazine reaction.
    Ma B; Niu W; Guo J
    Bioorg Chem; 2023 Mar; 132():106359. PubMed ID: 36642019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 4-Isocyanoindole-2'-deoxyribonucleoside (4ICIN): An Isomorphic Indole Nucleoside Suitable for Inverse Electron Demand Diels-Alder Reactions.
    Passow KT; Harki DA
    Tetrahedron Lett; 2023 Nov; 132():. PubMed ID: 38009110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions.
    Zawada Z; Guo Z; Oliveira BL; Navo CD; Li H; Cal PMSD; Corzana F; Jiménez-Osés G; Bernardes GJL
    Bioconjug Chem; 2021 Aug; 32(8):1812-1822. PubMed ID: 34264651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering.
    Haiber LM; Kufleitner M; Wittmann V
    Front Chem; 2021; 9():654932. PubMed ID: 33928067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alkene-tetrazine ligation for imaging cellular DNA.
    Rieder U; Luedtke NW
    Angew Chem Int Ed Engl; 2014 Aug; 53(35):9168-72. PubMed ID: 24981416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization.
    Plaks JG; Kaar JL
    Methods Mol Biol; 2019; 2012():279-297. PubMed ID: 31161513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of hydrogel microspheres
    Pareja Tello R; Wang S; Fontana F; Correia A; Molinaro G; López Cerdà S; Hietala S; Hirvonen J; Barreto G; Santos HA
    Biomater Sci; 2023 Jul; 11(14):4972-4984. PubMed ID: 37334482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid labeling of metabolically engineered cell-surface glycoconjugates with a carbamate-linked cyclopropene reporter.
    Späte AK; Bußkamp H; Niederwieser A; Schart VF; Marx A; Wittmann V
    Bioconjug Chem; 2014 Jan; 25(1):147-54. PubMed ID: 24328258
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.
    Knorr G; Kozma E; Herner A; Lemke EA; Kele P
    Chemistry; 2016 Jun; 22(26):8972-9. PubMed ID: 27218228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Orthogonal Modification of Norbornene-Functional Degradable Polymers.
    Williams RJ; Barker IA; O'Reilly RK; Dove AP
    ACS Macro Lett; 2012 Nov; 1(11):1285-1290. PubMed ID: 35607157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclopropene derivatives of aminosugars for metabolic glycoengineering.
    Hassenrück J; Wittmann V
    Beilstein J Org Chem; 2019; 15():584-601. PubMed ID: 30931000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.