These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25900709)

  • 1. Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses.
    Canadell D; García-Martínez J; Alepuz P; Pérez-Ortín JE; Ariño J
    Biochim Biophys Acta; 2015 Jun; 1849(6):653-64. PubMed ID: 25900709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress.
    Greatrix BW; van Vuuren HJ
    Curr Genet; 2006 Apr; 49(4):205-17. PubMed ID: 16397765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast.
    Garrido-Godino AI; García-López MC; García-Martínez J; Pelechano V; Medina DA; Pérez-Ortín JE; Navarro F
    Biochim Biophys Acta; 2016 May; 1859(5):731-43. PubMed ID: 27001033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress.
    Garre E; Romero-Santacreu L; Barneo-Muñoz M; Miguel A; Pérez-Ortín JE; Alepuz P
    PLoS One; 2013; 8(4):e61240. PubMed ID: 23620734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
    Grigull J; Mnaimneh S; Pootoolal J; Robinson MD; Hughes TR
    Mol Cell Biol; 2004 Jun; 24(12):5534-47. PubMed ID: 15169913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.
    Romero-Santacreu L; Moreno J; Pérez-Ortín JE; Alepuz P
    RNA; 2009 Jun; 15(6):1110-20. PubMed ID: 19369426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional response of Saccharomyces cerevisiae to potassium starvation.
    Anemaet IG; van Heusden GP
    BMC Genomics; 2014 Nov; 15(1):1040. PubMed ID: 25432801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription.
    de Nadal E; Posas F
    FEBS J; 2015 Sep; 282(17):3275-85. PubMed ID: 25996081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomics of mRNA turnover.
    Pérez-Ortín JE
    Brief Funct Genomic Proteomic; 2007 Dec; 6(4):282-91. PubMed ID: 18216027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae.
    Hilgers V; Teixeira D; Parker R
    RNA; 2006 Oct; 12(10):1835-45. PubMed ID: 16940550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures.
    Benet M; Miguel A; Carrasco F; Li T; Planells J; Alepuz P; Tordera V; Pérez-Ortín JE
    Biochim Biophys Acta Gene Regul Mech; 2017 Jul; 1860(7):794-802. PubMed ID: 28461260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol stress response in the mRNA flux of Saccharomyces cerevisiae.
    Izawa S
    Biosci Biotechnol Biochem; 2010; 74(1):7-12. PubMed ID: 20057118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-transcriptional regulation of gene expression in yeast under ethanol stress.
    Izawa S; Inoue Y
    Biotechnol Appl Biochem; 2009 May; 53(Pt 2):93-9. PubMed ID: 19397495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S; Kita T; Ikeda K; Inoue Y
    Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling condition-specific, genome-wide regulation of mRNA stability in yeast.
    Foat BC; Houshmandi SS; Olivas WM; Bussemaker HJ
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17675-80. PubMed ID: 16317069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid turnover of transcription factor Rim101 confirms a flexible adaptation mechanism against environmental stress in Saccharomyces cerevisiae.
    Obara K; Higuchi M; Ogura Y; Nishimura K; Kamura T
    Genes Cells; 2020 Oct; 25(10):651-662. PubMed ID: 32741024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II.
    Shalem O; Groisman B; Choder M; Dahan O; Pilpel Y
    PLoS Genet; 2011 Sep; 7(9):e1002273. PubMed ID: 21931566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.
    Bendjilali N; MacLeon S; Kalra G; Willis SD; Hossian AK; Avery E; Wojtowicz O; Hickman MJ
    G3 (Bethesda); 2017 Jan; 7(1):221-231. PubMed ID: 27883312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.