These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25900709)

  • 21. Yeast mRNA localization: protein asymmetry, organelle localization and response to stress.
    Pizzinga M; Ashe MP
    Biochem Soc Trans; 2014 Aug; 42(4):1256-60. PubMed ID: 25110034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms.
    García-Martínez J; Aranda A; Pérez-Ortín JE
    Mol Cell; 2004 Jul; 15(2):303-13. PubMed ID: 15260981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translational regulation in response to stress in Saccharomyces cerevisiae.
    Crawford RA; Pavitt GD
    Yeast; 2019 Jan; 36(1):5-21. PubMed ID: 30019452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium.
    Michán C; Monje-Casas F; Pueyo C
    DNA Repair (Amst); 2005 Apr; 4(4):469-78. PubMed ID: 15725627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress.
    Molin C; Jauhiainen A; Warringer J; Nerman O; Sunnerhagen P
    RNA; 2009 Apr; 15(4):600-14. PubMed ID: 19223440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A complete set of nascent transcription rates for yeast genes.
    Pelechano V; Chávez S; Pérez-Ortín JE
    PLoS One; 2010 Nov; 5(11):e15442. PubMed ID: 21103382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress.
    Huch S; Nissan T
    Sci Rep; 2017 Mar; 7():44395. PubMed ID: 28290514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-kinase control of environmental stress responsive transcription.
    Mace K; Krakowiak J; El-Samad H; Pincus D
    PLoS One; 2020; 15(3):e0230246. PubMed ID: 32160258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ubiquitin ligase Rsp5p is involved in the gene expression changes during nutrient limitation in Saccharomyces cerevisiae.
    Cardona F; Aranda A; del Olmo M
    Yeast; 2009 Jan; 26(1):1-15. PubMed ID: 19180642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a genomic view of the gene expression program regulated by osmostress in yeast.
    Martínez-Montañés F; Pascual-Ahuir A; Proft M
    OMICS; 2010 Dec; 14(6):619-27. PubMed ID: 20726780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-talks of sensory transcription networks in response to various environmental stresses.
    Chen T; Li F; Chen BS
    Interdiscip Sci; 2009 Mar; 1(1):46-54. PubMed ID: 20640818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast.
    Miller C; Schwalb B; Maier K; Schulz D; Dümcke S; Zacher B; Mayer A; Sydow J; Marcinowski L; Dölken L; Martin DE; Tresch A; Cramer P
    Mol Syst Biol; 2011 Jan; 7():458. PubMed ID: 21206491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth.
    Monje-Casas F; Michán C; Pueyo C
    Biochem J; 2004 Oct; 383(Pt 1):139-47. PubMed ID: 15222878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. YAP4 gene expression is induced in response to several forms of stress in Saccharomyces cerevisiae.
    Nevitt T; Pereira J; Rodrigues-Pousada C
    Yeast; 2004 Dec; 21(16):1365-74. PubMed ID: 15565582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TPS1 terminator increases mRNA and protein yield in a Saccharomyces cerevisiae expression system.
    Yamanishi M; Katahira S; Matsuyama T
    Biosci Biotechnol Biochem; 2011; 75(11):2234-6. PubMed ID: 22056446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.
    Baccarini L; Martínez-Montañés F; Rossi S; Proft M; Portela P
    Biochim Biophys Acta; 2015 Nov; 1849(11):1329-39. PubMed ID: 26403272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).
    Barozai MY; Bashir F; Muzaffar S; Afzal S; Behlil F; Khan M
    Gene; 2014 Oct; 550(1):74-80. PubMed ID: 25111117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrative responses to high pH stress in S. cerevisiae.
    Ariño J
    OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae.
    Steffensen L; Pedersen PA
    Eukaryot Cell; 2006 Feb; 5(2):248-61. PubMed ID: 16467466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.