These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 25900969)

  • 1. Computational Complexity Reduction of Synthetic-aperture Focus in Ultrasound Imaging Using Frequency-domain Reconstruction.
    Moghimirad E; Mahloojifar A; Mohammadzadeh Asl B
    Ultrason Imaging; 2016 May; 38(3):175-93. PubMed ID: 25900969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An implementation of synthetic aperture focusing technique in frequency domain.
    Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1399-408. PubMed ID: 17718329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Aperture Ultrasound Fourier Beamformation Using Virtual Sources.
    Moghimirad E; Villagomez Hoyos CA; Mahloojifar A; Mohammadzadeh Asl B; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2018-2030. PubMed ID: 27623581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The wavenumber algorithm for full-matrix imaging using an ultrasonic array.
    Hunter AJ; Drinkwater BW; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2450-62. PubMed ID: 19049924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.
    Matrone G; Savoia AS; Caliano G; Magenes G
    IEEE Trans Med Imaging; 2015 Apr; 34(4):940-9. PubMed ID: 25420256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Frequency-Domain Synthetic Aperture Focusing Techniques for Imaging With a High-Frequency Single-Element Focused Transducer.
    Shaswary E; Tavakkoli J; Kumaradas JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):57-70. PubMed ID: 30452355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of Range-Doppler Algorithm for Efficient Beamforming of Monostatic and Multistatic Ultrasound Signals.
    Jakovljevic M; Michaelides R; Biondi E; Hyun D; Zebker HA; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3165-3178. PubMed ID: 36094975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
    Vos HJ; van Neer PL; Mota MM; Verweij MD; van der Steen AF; Volker AW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):60-71. PubMed ID: 26571525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic aperture-based beam compression for intravascular ultrasound imaging.
    Vray D; Haas C; Rastello T; Krueger M; Brusseau E; Schroeder K; Gimenez G; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):189-201. PubMed ID: 11367787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of the fractional Fourier transform with coded excitation in ultrasound imaging.
    Bennett MJ; McLaughlin S; Anderson T; McDicken N
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):754-6. PubMed ID: 16602583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ICARUS: imaging pulse compression algorithm through remapping of ultrasound.
    Biagi E; Dreoni N; Masotti L; Rossi I; Scabia M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Feb; 52(2):261-79. PubMed ID: 15801314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to compensate the geometric distortion in the synthetic aperture ultrasonic imaging system.
    He X; Liu W; Chen S; Qin Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1623-32. PubMed ID: 26405927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.
    Zhang M; Wang G; Zhang L
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29072608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Millimeter-Wave 3D Imaging Algorithm for MIMO Synthetic Aperture Radar.
    Lin B; Li C; Ji Y; Liu X; Fang G
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
    Tran TN; Nguyen KC; Sacchi MD; Le LH
    Ultrasound Med Biol; 2014 Nov; 40(11):2715-27. PubMed ID: 25282483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized frequency-domain synthetic aperture focusing technique for ultrasonic imaging of irregularly layered objects.
    Qin K; Yang C; Sun F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):133-46. PubMed ID: 24402900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise time-of-flight calculation for 3-D synthetic aperture focusing.
    Andresen H; Nikolov SI; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1880-7. PubMed ID: 19811991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing.
    Merabet L; Robert S; Prada C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):772-788. PubMed ID: 30714916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction in diffraction ultrasound tomography using nonuniform FFT.
    Bronstein MM; Bronstein AM; Zibulevsky M; Azhari H
    IEEE Trans Med Imaging; 2002 Nov; 21(11):1395-401. PubMed ID: 12575876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse Convolutional Beamforming for Ultrasound Imaging.
    Cohen R; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2390-2406. PubMed ID: 30296220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.