These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
3. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
5. Coordination state probabilities and the solvation free energy of Zn2+ in aqueous methanol solutions. Tam HH; Asthagiri D; Paulaitis ME J Chem Phys; 2012 Oct; 137(16):164504. PubMed ID: 23126727 [TBL] [Abstract][Full Text] [Related]
6. Correlating solution binding and ESI-MS stabilities by incorporating solvation effects in a confined cucurbit[8]uril system. Rauwald U; Biedermann F; Deroo S; Robinson CV; Scherman OA J Phys Chem B; 2010 Jul; 114(26):8606-15. PubMed ID: 20550146 [TBL] [Abstract][Full Text] [Related]
7. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. Bryantsev VS; Diallo MS; Goddard WA J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800 [TBL] [Abstract][Full Text] [Related]
8. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method. Yin J; Henriksen NM; Slochower DR; Gilson MK J Comput Aided Mol Des; 2017 Jan; 31(1):133-145. PubMed ID: 27638809 [TBL] [Abstract][Full Text] [Related]
9. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution. Tang E; Di Tommaso D; de Leeuw NH Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433 [TBL] [Abstract][Full Text] [Related]
10. First-principles determination of molecular conformations of cyclic adenosine 3',5'-monophosphate in gas phase and aqueous solution. Chen X; Zhan CG J Phys Chem B; 2008 Dec; 112(51):16851-9. PubMed ID: 19367986 [TBL] [Abstract][Full Text] [Related]
11. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198 [TBL] [Abstract][Full Text] [Related]
12. Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T). Caldararu O; Olsson MA; Riplinger C; Neese F; Ryde U J Comput Aided Mol Des; 2017 Jan; 31(1):87-106. PubMed ID: 27600554 [TBL] [Abstract][Full Text] [Related]
13. Directly relating reduction energies of gaseous Eu(H2O)n(3+), n = 55-140, to aqueous solution: the absolute SHE potential and real proton solvation energy. Donald WA; Leib RD; Demireva M; O'Brien JT; Prell JS; Williams ER J Am Chem Soc; 2009 Sep; 131(37):13328-37. PubMed ID: 19711981 [TBL] [Abstract][Full Text] [Related]
14. Reaction mechanism and tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution: a combined Monte Carlo and quantum mechanics study. Lima MC; Coutinho K; Canuto S; Rocha WR J Phys Chem A; 2006 Jun; 110(22):7253-61. PubMed ID: 16737277 [TBL] [Abstract][Full Text] [Related]
15. SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657 [TBL] [Abstract][Full Text] [Related]
16. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach. Esque J; Cecchini M J Phys Chem B; 2015 Apr; 119(16):5194-207. PubMed ID: 25807150 [TBL] [Abstract][Full Text] [Related]
17. SAMPL6 host-guest challenge: binding free energies via a multistep approach. Eken Y; Patel P; Díaz T; Jones MR; Wilson AK J Comput Aided Mol Des; 2018 Oct; 32(10):1097-1115. PubMed ID: 30225724 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation. Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264 [TBL] [Abstract][Full Text] [Related]
19. Density functional theory study of the aluminium(III) hydrolysis in aqueous solution. Yang W; Qian Z; Miao Q; Wang Y; Bi S Phys Chem Chem Phys; 2009 Apr; 11(14):2396-401. PubMed ID: 19325971 [TBL] [Abstract][Full Text] [Related]
20. Absolute free-energy calculations of liquids using a harmonic reference state. Tyka MD; Sessions RB; Clarke AR J Phys Chem B; 2007 Aug; 111(32):9571-80. PubMed ID: 17655215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]