These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25901661)

  • 41. Optical properties of vanadium dioxide and vanadium pentoxide thin films.
    Chain EE
    Appl Opt; 1991 Jul; 30(19):2782-7. PubMed ID: 20700275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preferential growth of ZnO thin films by the atomic layer deposition technique.
    Pung SY; Choy KL; Hou X; Shan C
    Nanotechnology; 2008 Oct; 19(43):435609. PubMed ID: 21832704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of a well-defined amino-terminated self-assembled monolayer and copper microlines on a polyimide substrate covered with an oxide nanoskin.
    Hozumi A; Asakura S; Fuwa A; Shirahata N; Kameyama T
    Langmuir; 2005 Aug; 21(18):8234-42. PubMed ID: 16114926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomimetic formation of titania thin films: effect of amino acids on the deposition process.
    Durupthy O; Jeurgens LP; Bill J
    ACS Appl Mater Interfaces; 2011 May; 3(5):1624-32. PubMed ID: 21480641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: role of precursors on the film growth and properties.
    Guruvenket S; Andrie S; Simon M; Johnson KW; Sailer RA
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5293-9. PubMed ID: 22979919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Site selective micro-patterned rutile TiO2 film through a seed layer deposition.
    Liang S; Chen M; Xue Q; Qi Y; Chen J
    J Colloid Interface Sci; 2007 Jul; 311(1):194-202. PubMed ID: 17391689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and electrical properties of (Bi(1/2)Na(1/2))TiO3 (BNT) ferroelectric thin films by liquid sprayed mist chemical vapor deposition technique.
    Kim BH; Kim SH; Kim JH; Lee KJ; Choa YH; Choi YK; Kim SS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3479-82. PubMed ID: 17252793
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aluminum Precursor Interactions with Alkali Compounds in Thermal Atomic Layer Etching and Deposition Processes.
    Hennessy J; Jewell AD; Jones JP; Crouch GM; Nikzad S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4723-4730. PubMed ID: 33428384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing.
    Willinger MG; Neri G; Bonavita A; Micali G; Rauwel E; Herntrich T; Pinna N
    Phys Chem Chem Phys; 2009 May; 11(19):3615-22. PubMed ID: 19421470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating.
    Lin RZ; Cheng KY; Pan FM; Sheu JT
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39935-39939. PubMed ID: 29112364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patterning of Solid Films via Selective Atomic Layer Deposition Based on Silylation and UV/Ozonolysis.
    Guo L; Lee I; Zaera F
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19836-41. PubMed ID: 27455137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Area selective deposition using alternate deposition and etch super-cycle strategies.
    Bonvalot M; Vallée C; Mannequin C; Jaffal M; Gassilloud R; Possémé N; Chevolleau T
    Dalton Trans; 2022 Jan; 51(2):442-450. PubMed ID: 34878446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasma engineering of silicon quantum dots and their properties through energy deposition and chemistry.
    Sahu BB; Yin Y; Gauter S; Han JG; Kersten H
    Phys Chem Chem Phys; 2016 Sep; 18(37):25837-25851. PubMed ID: 27711781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermally evaporated SiO thin films as a versatile interlayer for plasma-based OLED passivation.
    Yun WM; Jang J; Nam S; Kim LH; Seo SJ; Park CE
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3247-53. PubMed ID: 22646486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition.
    Alasaarela T; Korn D; Alloatti L; Säynätjoki A; Tervonen A; Palmer R; Leuthold J; Freude W; Honkanen S
    Opt Express; 2011 Jun; 19(12):11529-38. PubMed ID: 21716384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Area-selective atomic layer deposition of lead sulfide: nanoscale patterning and DFT simulations.
    Lee W; Dasgupta NP; Trejo O; Lee JR; Hwang J; Usui T; Prinz FB
    Langmuir; 2010 May; 26(9):6845-52. PubMed ID: 20099790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic Studies into the Area Selectivity of Chemical Vapor Deposition Polymerization.
    Zhong X; Jordan R; Chen JR; Raymond J; Lahann J
    ACS Appl Mater Interfaces; 2023 May; 15(17):21618-21628. PubMed ID: 37079371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot-wire polysilicon waveguides with low deposition temperature.
    Masaud TM; Tarazona A; Jaberansary E; Chen X; Reed GT; Mashanovich GZ; Chong HM
    Opt Lett; 2013 Oct; 38(20):4030-2. PubMed ID: 24321913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide.
    Ratzsch S; Kley EB; Tünnermann A; Szeghalmi A
    Nanotechnology; 2015 Jan; 26(2):024003. PubMed ID: 25525676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.