These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25901816)

  • 1. Assembling molecular Sierpiński triangle fractals.
    Shang J; Wang Y; Chen M; Dai J; Zhou X; Kuttner J; Hilt G; Shao X; Gottfried JM; Wu K
    Nat Chem; 2015 May; 7(5):389-93. PubMed ID: 25901816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Sierpiński Triangles up to the Fifth Order.
    Li C; Zhang X; Li N; Wang Y; Yang J; Gu G; Zhang Y; Hou S; Peng L; Wu K; Nieckarz D; Szabelski P; Tang H; Wang Y
    J Am Chem Soc; 2017 Oct; 139(39):13749-13753. PubMed ID: 28885024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Molecular Growth between Fractals and Crystals on Surfaces.
    Zhang X; Li N; Gu GC; Wang H; Nieckarz D; Szabelski P; He Y; Wang Y; Xie C; Shen ZY; Lü JT; Tang H; Peng LM; Hou SM; Wu K; Wang YF
    ACS Nano; 2015 Dec; 9(12):11909-15. PubMed ID: 26502984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100).
    Zhang X; Li N; Liu L; Gu G; Li C; Tang H; Peng L; Hou S; Wang Y
    Chem Commun (Camb); 2016 Aug; 52(69):10578-81. PubMed ID: 27498982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Controllability and Applicability of Surface Molecular Self-Assemblies.
    Xing L; Peng Z; Li W; Wu K
    Acc Chem Res; 2019 Apr; 52(4):1048-1058. PubMed ID: 30896918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality.
    Sarkar R; Guo K; Moorefield CN; Saunders MJ; Wesdemiotis C; Newkome GR
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12182-5. PubMed ID: 25214464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Packing fractal Sierpiński triangles into one-dimensional crystals via a templating method.
    Li N; Gu G; Zhang X; Song D; Zhang Y; Teo BK; Peng LM; Hou S; Wang Y
    Chem Commun (Camb); 2017 Mar; 53(24):3469-3472. PubMed ID: 28271114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized stiffness in regular fractal polymer structures.
    Werner M; Sommer JU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051802. PubMed ID: 21728562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Sierpiński triangles with the coexistence of C
    Zhang X; Li N; Gu G; Zhang Y; Hou S; Wang Y
    Chem Commun (Camb); 2017 Aug; 53(86):11826-11829. PubMed ID: 29039853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithmic self-assembly of DNA Sierpinski triangles.
    Rothemund PW; Papadakis N; Winfree E
    PLoS Biol; 2004 Dec; 2(12):e424. PubMed ID: 15583715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of fractal geometries in the evolution of a metabolic enzyme.
    Sendker FL; Lo YK; Heimerl T; Bohn S; Persson LJ; Mais CN; Sadowska W; Paczia N; Nußbaum E; Del Carmen Sánchez Olmos M; Forchhammer K; Schindler D; Erb TJ; Benesch JLP; Marklund EG; Bange G; Schuller JM; Hochberg GKA
    Nature; 2024 Apr; 628(8009):894-900. PubMed ID: 38600380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport properties of continuous-time quantum walks on Sierpinski fractals.
    Darázs Z; Anishchenko A; Kiss T; Blumen A; Mülken O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032113. PubMed ID: 25314401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-surface construction of a metal-organic Sierpiński triangle.
    Sun Q; Cai L; Ma H; Yuan C; Xu W
    Chem Commun (Camb); 2015 Sep; 51(75):14164-6. PubMed ID: 26247871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the self-assembly of simple molecular bricks into Sierpiński triangles.
    Nieckarz D; Szabelski P
    Chem Commun (Camb); 2014 Jul; 50(52):6843-5. PubMed ID: 24836516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-based supramolecular chemistry using hydrogen bonds.
    Slater AG; Perdigão LM; Beton PH; Champness NR
    Acc Chem Res; 2014 Dec; 47(12):3417-27. PubMed ID: 25330179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.
    Wang C; Wang Z; Zhang X
    Acc Chem Res; 2012 Apr; 45(4):608-18. PubMed ID: 22242811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic structure factor of vibrating fractals: proteins as a case study.
    Reuveni S; Klafter J; Granek R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011906. PubMed ID: 22400590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benoît Mandelbrot (1924-2010).
    Gomory R
    Nature; 2010 Nov; 468(7322):378. PubMed ID: 21085164
    [No Abstract]   [Full Text] [Related]  

  • 19. Nanoassembly of a fractal polymer: a molecular "Sierpinski hexagonal gasket".
    Newkome GR; Wang P; Moorefield CN; Cho TJ; Mohapatra PP; Li S; Hwang SH; Lukoyanova O; Echegoyen L; Palagallo JA; Iancu V; Hla SW
    Science; 2006 Jun; 312(5781):1782-5. PubMed ID: 16690820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters.
    Maraghechi P; Elezzabi AY
    Opt Express; 2010 Dec; 18(26):27336-45. PubMed ID: 21197012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.