BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 2590209)

  • 1. Lens crystallin changes associated with amphibian metamorphosis: involvement of a beta-crystallin polypeptide.
    Jiang YJ; Chiou SH; Chang WC
    Biochem Biophys Res Commun; 1989 Nov; 164(3):1423-30. PubMed ID: 2590209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of gamma-crystallin from the eye lens of bullfrog: complexity of gamma-crystallin multigene family as revealed by sequence comparison among different amphibian species.
    Lu SF; Pan FM; Chiou SH
    J Protein Chem; 1996 Jan; 15(1):103-13. PubMed ID: 8838595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of origin of two polypeptides of 4 and 5 kD isolated from human lenses.
    Srivastava OP; Srivastava K; Silney C
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):207-14. PubMed ID: 7507906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of rho-crystallin from Japanese common bullfrog lens.
    Fujii Y; Watanabe K; Hayashi H; Urade Y; Kuramitsu S; Kagamiyama H; Hayaishi O
    J Biol Chem; 1990 Jun; 265(17):9914-23. PubMed ID: 2190986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal sequences of gamma-crystallins from the amphibian lens and their homology with gamma-crystallins of other major classes of vertebrates.
    Chiou SH; Chang WP; Chen SW; Lo CH
    Int J Pept Protein Res; 1988 Mar; 31(3):335-8. PubMed ID: 3259558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence analysis of one major basic beta-crystallin (beta Bp) of amphibian lenses: evolutionary comparison and phylogenetic relatedness between beta- and gamma-crystallins.
    Pan FM; Chang WC; Lu SF; Hsu AL; Chiou SH
    Biochem Biophys Res Commun; 1995 Dec; 217(3):940-9. PubMed ID: 8554619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical comparison of epsilon [correction of gamma]-crystallins from duck and frog eye lenses.
    Chiou SH; Chang WC; Kuo J; Pan FM; Lo TB
    FEBS Lett; 1986 Feb; 196(2):219-22. PubMed ID: 3485058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of crystallins from frog lenses.
    Chiou SH
    Int J Pept Protein Res; 1987 Jul; 30(1):108-16. PubMed ID: 3499402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence analysis of four acidic beta-crystallin subunits of amphibian lenses: phylogenetic comparison between beta- and gamma-crystallins.
    Lu SF; Pan FM; Chiou SH
    Biochem Biophys Res Commun; 1996 Apr; 221(2):219-28. PubMed ID: 8619837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P; Horwitz J; Ding L; Corbin RW; Posner M
    Mol Vis; 2013; 19():408-17. PubMed ID: 23441112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of human lens crystallins.
    Thomson JA; Augusteyn RC
    Exp Eye Res; 1985 Mar; 40(3):393-410. PubMed ID: 4065234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical comparison of lens crystallins from three reptilian species.
    Chiou SH; Chang WP; Lo CH
    Biochim Biophys Acta; 1988 Jun; 955(1):1-9. PubMed ID: 3382668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence analysis of frog alpha-crystallin cDNA and its deduced primary structure: comparison of alpha A subunit chains among different vertebrate species.
    Lu SF; Pan FM; Chiou SH
    Biochem Biophys Res Commun; 1995 May; 210(3):974-81. PubMed ID: 7763271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens growth and protein changes in the eastern grey kangaroo.
    Augusteyn RC
    Mol Vis; 2011; 17():3234-42. PubMed ID: 22194649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of alpha A and alpha B crystallin polypeptides during Rana temporaria lens development.
    Brahma SK; McDevitt DS; DeFize LH
    Exp Eye Res; 1987 Aug; 45(2):253-61. PubMed ID: 3308501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of crystallin fragments in cell-free extracts of bovine lens: effects of ageing and oxygen free-radicals.
    Hipkiss AR; Carmichael PL; Zimmermann B
    Acta Biol Hung; 1991; 42(1-3):243-63. PubMed ID: 1844313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of gamma-crystallins from eye lenses of shark: closer structural similarity to mammalian than other piscine gamma-crystallins?
    Chiou SH
    FEBS Lett; 1989 Jun; 250(1):25-9. PubMed ID: 2737298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels of crystallin fragments and identification of their origin in water soluble high molecular weight (HMW) proteins of human lenses.
    Srivastava OP; Srivastava K; Silney C
    Curr Eye Res; 1996 May; 15(5):511-20. PubMed ID: 8670752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.